Multi-Stage LLM Fine-Tuning with a Continual Learning Setting

Changhao Guan¹, Chao Huang¹, Hongliang Li¹

, You Li¹, Ning Cheng¹, Zihe Liu¹

, Jinan Xu¹, Yufeng Chen^{*1}, Jian Liu²

¹Beijing Jiaotong University, Beijing, China

²University of Science and Technology Beijing, Beijing, China

{guanchanghao, huangchao, hongliangli, youlee}@bjtu.edu.cn

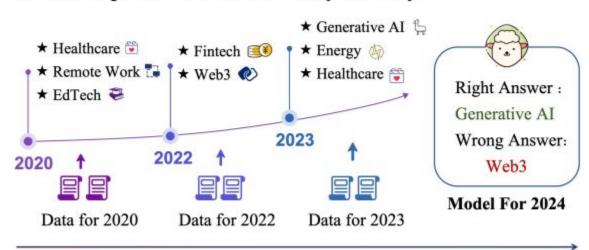
{ningcheng,23120386, jaxu, chenyf}@bjtu.edu.cn, jian.liu@ustb.edu.cn

Year of Publication :- 2025

Number of Citations :- 2

Introduction

What are the most prominent technology sectors for global venture capital investment in today's society?



Continual Learning of Novel Knowledge

Introduction

- Large Language Models (LLMs) are considered complex knowledge repositories as they have ability to represent diverse general information [1,2].
- However, it is necessary to fine-tune them on customized datasets when applying them to specific domains [3,4].
- In addition, there is a continual learning requirement, especially when domain knowledge rapidly changes[5,6].
- Pilot experiments show that employing the standard fine-tuning methods for LLMs significantly degrades their performance. However, this problem has not received much research attention.

^[2] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35, 27730-27744.

^[3] Xu, R., Luo, F., Zhang, Z., Tan, C., Chang, B., Huang, S., & Huang, F. (2021). Raise a child in large language model: Towards effective and generalizable fine-tuning. arXiv preprint arXiv:2109.05687.

^[4] Xie, T., Wan, Y., Huang, W., Yin, Z., Liu, Y., Wang, S., ... & Hoex, B. (2023). Darwin series: Domain specific large language models for natural science. arXiv preprint arXiv:2308.13565. [5] McCann, B., Keskar, N. S., Xiong, C., & Socher, R. (2018). The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730.

^[6] Gururangan, S., Marasović, A., Swavamdiota, S., Lo, K., Beltaov, I., Downey, D., & Smith, N. A. (2020). Don't stop pretraining: Adapt language models to domains and tasks, arXiv preprint arXiv:2004.10964

Introduction - Problems in Continual Learning

- Potential knowledge conflict [7,8]. When a domain undergoes rapid changes, potential conflicts between new and old knowledge may arise, potentially leading to "hallucinations" in LLMs.
- Incomparable amount of fine-tuning data compared to pre-training data [9,10]. Compared to the extensive data leveraged during pre-training, the domain specific data available for fine-tuning is typically scarce, making it challenging to adapt the model's parameters to fit for fine-tuning.
- Proposed a new approach for fine-tuning LLMs in the multi-stage continual learning settings using a preference-based forgetting strategy and self-distillation based data augmentation.

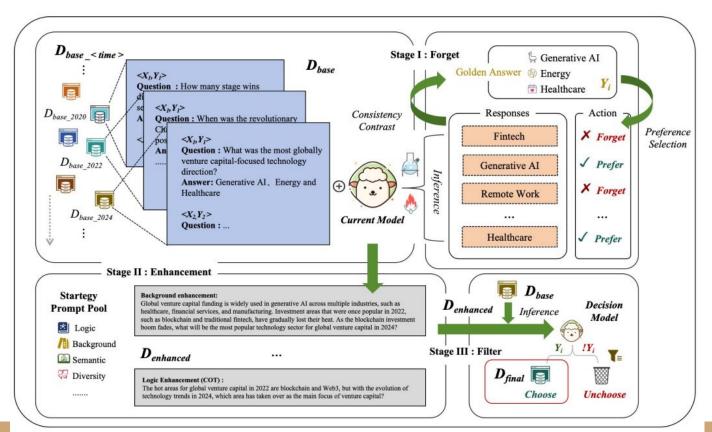
Related Works - Fine tuning LLMs

- Fine-tuning is a widely adopted approach to adopt LLMs to new domains and tasks using domain specific data [11,12].
 - Fine-tuning for complex instructions.
 - Fine-tuning for specific domains.
- Solely lying on fine-tuning often struggles to acquire new knowledge when facing significant domain shifts[13].
- Existing works have 2 stage approach [14].
 - First Stage Fine-tuning to acquire domain knowledge.
 - Second Stage Fine-tuning to enhance task specific capabilities.
- [11] Ding, R., Han, X., & Wang, L. (2022). A unified knowledge graph augmentation service for boosting domain-specific NLP tasks. arXiv preprint arXiv:2212.05251.
- [12] Zheng, J., Hong, H., Liu, F., Wang, X., Su, J., Liang, Y., & Wu, S. (2024). Fine-tuning large language models for domain-specific machine translation. arXiv preprint arXiv:2402.15061.
- [13] Emelin, D., Bonadiman, D., Alqahtani, S., Zhang, Y., & Mansour, S. (2022). Injecting domain knowledge in language models for task-oriented dialogue systems. arXiv preprint arXiv:2212.08120.
- [14] Han, R., Ren, X., & Peng, N. (2020). ECONET: Effective continual pretraining of language models for event temporal reasoning. arXiv preprint arXiv:2012.15283.

Related Works - Continual Learning with LLMs

- Traditional CL methods [15].
 - Regularization based.
 - Replay Based.
 - Architecture based strategies.
- Continuous fine tuning strategy [16].
- Modular continual learning [17].
- Forget-before-learn [18].

Approach - Overview



Preference Based Learning Bias

- Let (x, y) be a training example.
- x is utilized as an input and apply the model K times to get a prediction set Y for each input x.
- Measure compatibility between each element of the set Y and the desired
 y.
- Divide Y into subsets Y_{align} and Y_{conflict}.
- Main motivation is to bias the model to generate responses similar to those in Y_{align} and avoid those in Y_{conf}.

Preference Losses

Positive preference loss.

$$\mathcal{L}_{PP} = -\sum_{y' \in Y_{\text{align}}} \log \left(\frac{\pi_{\theta}(y' \mid x)}{\pi_{\text{ref}}(y' \mid x)} \right)$$

Negative preference loss.

$$\mathcal{L}_{\text{NP}} = \sum_{y' \in Y_{\text{conf}}} \log \left(\frac{\pi_{\theta}(y' \mid x)}{\pi_{\text{ref}}(y' \mid x)} \right)$$

Total loss

$$\mathcal{L}_{\text{total}} = \alpha \cdot \mathcal{L}_{PP} + \beta \cdot \mathcal{L}_{NP}$$

Data Augmentation with Self Distillation

- Using the LLMs themselves for augmentation.
- Augmentation strategies.
 - Background knowledge integration LLM is asked to provide more background knowledge in order for the input to contain more context related information.
 - Logic-Compatible Expansion LLM is asked to incorporate the logic-related information to expand the semantic complexity of the input.
 - Paraphrase augmentation This method involves rewriting and rephrasing the original example to write more similar examples with various structures and expressions.
- Based on the above strategies, a new pair (x', y) can be created for any training example (x,y).

Dynamic Data Selection Strategy

- To evaluate the effectiveness and validity if the augmented data for model training.
- Based on heuristic criteria.
 - Mutual Information.

$$MI(x'; \hat{x}') = \sum_{w, \hat{w}'} N(w, \hat{w}') \log \left(\frac{N(w, \hat{w}')}{N(w)N(\hat{w}')} \right)$$

- Indication from LLMs.
 - By this criterion, it is measured whether x' produces same result as x.
- The filtered set of high-quality samples will be used as input for subsequent augmentation and fine-tuning processes.

Experimental Setup - Datasets

- Considered rapidly evolving domains: Natural sciences, medicine, technology, transportation, tourism, finance and social sciences.
- Total 21,000 question- answer pairs with 3000 question-answer pairs for each domain.
- In this, there are 1000 examples shared by any 2 domains to evaluate cross domain conflict situations.
- 6000 additional samples as general purpose samples to indicate model's performance in domain agnostic setting.

Experimental Setup - Evaluation Settings

- Domain independent continual learning.
 - Use the domain independent dataset (6000 samples) for fine-tuning in the initial stage.
 - Manually edit the answers and use the revised dataset for fine-tuning.
 - Generate the same number of examples compatible with the fine-tuning data as evaluation set.
- Cross domain scenarios.
 - Conducting continual learning using cross domain data by gradually adding domains one by one.
 - Manual verification to ensure that a minimum 1000 examples are shared between 2 domains.
 - Before fine-tuning, answers were edited to be different from previous domain to mimic domain dispute.
 - Each fine-tuning stage contains, 2000 domain independent examples and 1000 cross domain conflict examples.

Experimental Setup - Evaluation Metric

- Knowledge Gain Ratio (KGR) Assessing model's improvement in learning dynamically evolving knowledge.
- Post-injection Accuracy To measure overall accuracy improvement in a given test set.

Experimental Setup - Baselines and backbone LLMs

Baselines

- Continual instruction fine-tuning (CIF).
- Modular continual learning (MoCL).
- Forgetting before learning (F-Learning).

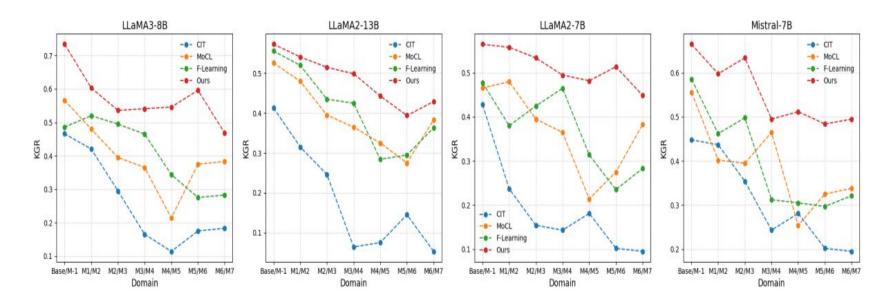
Backbone LLMs.

- Llama2.
- o Llama3.
- o Misral7B.

Results - Domain independent continual learning

Eval	Stage	1 (Initial)	Sta	ge2	Sta	ge3	Sta	ge4	Sta	ge5
	KGR	ACC	KGR	ACC	KGR	ACC	KGR	ACC	KGR	ACC
					Llama2-7B					
CIT (2023b)	50.50	66.55	44.30 16.20	46.10 \(\psi_{20.45}\)	12.50 \(\partial_{38.00}\)	25.39 ↓41.16	12.20 \(\partial 38.30\)	24.23 ↓42.32	11.70 ↓38.80	17.60 148.9
MoCL (2024a)	-	-	48.20 _{†3.90}	49.60 13.50	45.50 †33.00	47.70 122.31	$46.80_{\uparrow34.60}$	$47.10_{\uparrow 22.87}$	$26.20_{\uparrow 14.50}$	27.35 19.75
F-Learning (2023)	_	-	54.40 _{↑10.10}	57.50 ↑11.40	$49.40_{\uparrow 36.90}$	52.25 _{↑26.86}	$49.20_{\uparrow37.00}$	49.75 ↑25.52	$21.80_{\ \uparrow 10.10}$	20.90 ↑3.30
Ours	-	-	60.20 \(\phi\)15.90	62.55 \(\phi_{16.45}\)	69.40 \(\phi 56.90\)	69.65 †44.26	68.60 \(\phi_{56.40}\)	67.53 †43.30	$75.80_{\ \uparrow 64.10}$	75.49 _{↑57.8}
					Llama2-13B					
CIT (2023b)	68.90	81.95	32.20 \(\psi_{36.70}\)	34.20 147.75	26.80 142.10	33.55 _48.40	24.60 \(\psi 44.30\)	32.85 ↓49.10	11.20 \$\dagger\$57.70	17.85 ↓64.1
MoCL (2024a)	-	-	41.60 19.40	41.95 17.75	50.40 †23.60	51.25 17.70	$48.70_{\uparrow 24.10}$	50.00 †17.15	25.80 †14.60	26.50 18.6
F-Learning (2023)	_	_	43.30 ↑11.10	43.80 19.60	59.30 †32.50	60.70 ↑27.15	53.90 ↑29.30	54.90 _{↑22.05}	33.60 ↑22.40	33.90 ↑16.0
Ours		-	$66.30_{\uparrow34.10}$	67.25 †33.05	$76.50_{\uparrow 49.70}$	$77.40_{\uparrow 43.85}$	$66.20_{\uparrow41.60}$	65.45 †32.60	$76.50_{\uparrow 65.30}$	77.65 _{↑59.8}
					Llama3-8B					
CIT (2023b)	65.90	81.55	48.80 \(\psi_{17.10}\)	49.90 _31.65	31.90 \(\partial_{34.00}\)	34.05 _47.50	30.30 \(\partial_{35.60}\)	35.30 \(\psi_{46.25}\)	23.40 \$\pmu_{42.50}\$	27.70 \$53.8
MoCL (2024a)			$70.40_{\uparrow 21.6}$	$70.65_{\ \uparrow 20.75}$	52.50 \(\phi_{20.60}\)	52.65 _{↑18.60}	63.30 †33.00	$63.65_{\ \uparrow 28.35}$	$31.30_{\ \uparrow 7.90}$	30.95 ↑3.2
F-Learning (2023)	_	_	$67.00_{\uparrow 18.20}$	67.45 17.55	58.40 126.50	57.95 _{↑23.90}	$61.40_{\uparrow31.10}$	$61.20_{\uparrow 25.90}$	57.70 134.30	57.90 ↑30.2
Ours	-	-	$83.60_{\uparrow 34.80}$	83.90 †34.00	$69.40_{\uparrow 37.50}$	69.55 †35.50	$69.20_{\uparrow33.90}$	69.20 †39.03	$74.80_{\ \uparrow 51.40}$	74.60 146.9
					Mistral-7B					
CIT (2023b))	61.00	74.20	41.20 \(\psi_{19.80}\)	44.65 \(\psi_{29.55}\)	38.50 \(\psi_{22.50}\)	38.90 \(\partial 35.30\)	32.80 \(\psi_{28.20}\)	36.40 ↓37.80	21.60 \(\paraboldon 39.40\)	23.50 \$50.5
MoCL (2024a)			54.40 \(\pmax_{13.20}\)	51.25 16.60	62.50 †24.00	59.10 _{↑20.20}	58.79 _{†25.99}	57.25 _{↑20.85}	47.10 125.50	46.00 ↑22.5
F-Learning (2023)		_	48.30 _{↑7.10}	51.50 _{16.85}	58.10 ↑19.60	57.65 _{↑18.75}	54.20 _{†21.40}	55.30 \(\pmax_{18.90}\)	33.80 ↑12.20	34.90 ↑11.
Ours	-	-	64.60 123.40	65.72 121.07	72.60 \(\partial_{34.10}\)	72.80 ↑33.90	71.20 +38.40	71.58 †35.18	77.50 ↑55.90	77.34 ↑53.1

Results - Cross Domain Setting



Discussion - Ablation study

Impact of Preference based Learning Bias.

Method	ACC(%)	KGR(%)
CIT	48.80	49.90
PBL (Ours)	59.00	59.30

Impact of Data Augmentation with Self-Distillation.

Method	ACC (%)	KGR (%)		
No Argument	49.90	48.80		
+ BKI	58.85	58.60		
+ LCE	52.80	52.50		
+ PA	56.40	64.10		
CA (Ours)	69.90	69.30		

Discussion - Ablation Study

• Impact of Dynamic Data Selection Strategy.

Method	ACC (%)	KGR (%)	
No Argument	49.90	48.80	
Data Argument	69.90	69.30	
+ RS (50%)	79.85	79.60	
+ RS (25%)	69.85	63.50	
+ RS (12.5%)	70.40	66.70	
DS (Ours)	81.20	82.50	

Discussion - Analysis of Knowledge Retention

- 3000 data points were added in the first round of the experiment.
- Model's knowledge retention and forgetting of original domain data were monitored in every round of the experiment.
- Knowledge Retention Rate (KRR) is introduced as an additional evaluation metric.
- The traditional CIT method results in a significant decline in both ACC and KRR after multiple training rounds, indicating a severe catastrophic forgetting phenomenon and a sharp deterioration in the model's ability to recall original information.

Conclusion

- This work introduced a novel approach that incorporates conflict-based learning to address knowledge conflicts.
- This work introduces a self-distillation based data augmentation approach to enhance training data.
- Extensive experiments were done through which the method demonstrated significant improvements in both knowledge acquisition efficiency and long term retention of previously learned information.

References

- 1. Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 1(3), 3.
- 2. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35, 27730-27744.
- 3. Xu, R., Luo, F., Zhang, Z., Tan, C., Chang, B., Huang, S., & Huang, F. (2021). Raise a child in large language model: Towards effective and generalizable fine-tuning. arXiv preprint arXiv:2109.05687.
- 4. Xie, T., Wan, Y., Huang, W., Yin, Z., Liu, Y., Wang, S., ... & Hoex, B. (2023). Darwin series: Domain specific large language models for natural science. arXiv preprint arXiv:2308.13565.
- 5. McCann, B., Keskar, N. S., Xiong, C., & Socher, R. (2018). The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730.
- 6. Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., & Smith, N. A. (2020). Don't stop pretraining: Adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964.
- 7. Longpre, S., Perisetla, K., Chen, A., Ramesh, N., DuBois, C., & Singh, S. (2021). Entity-based knowledge conflicts in question answering. arXiv preprint arXiv:2109.05052.
- 8. Liu, Y., Yao, Z., Lv, X., Fan, Y., Cao, S., Yu, J., ... & Li, J. (2024). Untangle the knot: Interweaving conflicting knowledge and reasoning skills in large language models. arXiv preprint arXiv:2404.03577.
- 9. Jiang, G., Jiang, C., Xue, S., Zhang, J. Y., Zhou, J., Lian, D., & Wei, Y. (2023). Towards anytime fine-tuning: Continually pre-trained language models with hypernetwork prompt. arXiv:2310.13024.
- 10. Dong, G., Yuan, H., Lu, K., Li, C., Xue, M., Liu, D., ... & Zhou, J. (2023). How abilities in large language models are affected by supervised fine-tuning data composition. arXiv preprint arXiv:2310.05492.
- 11. Ding, R., Han, X., & Wang, L. (2022). A unified knowledge graph augmentation service for boosting domain-specific NLP tasks. arXiv preprint arXiv:2212.05251.
- 12. Zheng, J., Hong, H., Liu, F., Wang, X., Su, J., Liang, Y., & Wu, S. (2024). Fine-tuning large language models for domain-specific machine translation. arXiv preprint arXiv:2402.15061.
- 13. Emelin, D., Bonadiman, D., Alqahtani, S., Zhang, Y., & Mansour, S. (2022). Injecting domain knowledge in language models for task-oriented dialogue systems. arXiv preprint arXiv:2212.08120.
- 14. Han, R., Ren, X., & Peng, N. (2020). ECONET: Effective continual pretraining of language models for event temporal reasoning. arXiv preprint arXiv:2012.15283.
- 15. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... & Hadsell, R. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13), 3521-3526.
- 16. Xin, C., Lu, Y., Lin, H., Zhou, S., Zhu, H., Wang, W., ... & Sun, L. (2024, May). Beyond full fine-tuning: Harnessing the power of LoRA for multi-task instruction tuning. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 2307-2317).