M2DS: Multilingual Dataset for Multidocument Summarization

Presented by: Kushan Hewapathirana^{1,2}

Co-authors:

- o Nisansa de Silva¹
- o C.D. Athuraliya²
- 1. Department of Computer Science and Engineering, University of Moratwua, Sri Lanka.
- ConscientAl, Sri Lanka.

Contents

Related Work

Methodology

Conclusions

Introduction to Multi-document Summarization (MDS)

MDS is an automatic process that aims to extract relevant information from multiple texts written about the same topic and represent it in a short piece of text [1]

Complex relationships between different documents, making it more intricate than single-document summarization (SDS) [1,2]

Current MDS datasets are largely Englishcentric, limiting their global applicability [2]

Multilingual Requirement in MDS

The world has over 7,000 languages, but most MDS research focuses only on English [3]

With only 380 million native English speakers, there's a critical need for multilingual datasets to serve a broader global audience [3,4]

M2DS addresses this gap by introducing a multilingual dataset that includes document-summary pairs in five languages

Facilitate the development of robust MDS models across diverse languages, including low-resource languages

Research Objectives

- To Introduce the first comprehensive multilingual MDS dataset, M2DS
- Evaluate state-of-the-art MDS models on this multilingual dataset

Existing MDS Datasets

- OUC and TAC: Early benchmarks primarily focused on the news domain [2].
- Multi-News: Provides substantial size and traceability in the news domain [4].
- WikiSum: Leverages Wikipedia and search engine results for abstractive summarization [5].
- DigSurvey: Contribute to scientific writing, focusing on comprehensive summaries [6].

[5] Liu, P.J., Saleh, M., et al.: Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198 (2018)

[6] Liu, S., Cao, J., Yang, R., Wen, Z.: Generating a structured summary of numerous academic papers: dataset and method. arXiv preprint arXiv:2302.04580 (2023)

Challenges in MDS Research

- MDS datasets are relatively scarce compared to single-document summarization (SDS) datasets [1,2].
- Most datasets and research efforts are limited to English, creating a gap in multilingual summarization [4]
- Progress in multilingual MDS is limited, with most research focusing on single-document summarisation (SDS) and cross-lingual summarisation (CLS) [7].

^[1] C. Ma, W. E. Zhang et al., "Multi-document summarization via deep learning techniques: A survey," ACM Computing Surveys (CSUR), 2020

^[2] M. Afsharizadeh, H. Ebrahimpour-Komleh et al., "A survey on multi-document summarization and domain- oriented approaches," Journal of Information Systems and Telecommunication (JIST), vol. 1, no. 37, p. 68,2022 [4] Giannakopoulos, G.: Multi-document multilingual summarization and evaluation tracks in ACL 2013 multiling workshop. In: Proceedings of the Multiling 2013 Workshop on Multilingual Multi-document Summarization, pp. 20–28 (2012)

^[7] Elhadad, M., Miranda-Jim enez, S., Steinberger, J., Giannakopoulos, G.: Multi-document multilingual summarization corpus preparation, Part 2: Czech, Hebrew. In: Proceedings of the MultiLing 2013 Workshop on 10 Multilingual Multi-document Summarization, pp. 13–19 (2013)

Existing MDS Models

- Transformer-Based Models [1,8]:
 - BERTSUM: Uses a hierarchical encoder for summarization tasks
 - BART: Designed as a denoising autoencoder
 - PEGASUS: Leverages self-supervised learning
 - T5: A text-to-text transformer model
 - PRIMERA: Based on LongFormer Encoder-Decoder (LED) architecture, known for synthetic summary generation during pretraining

- Challenges [1]:
 - Difficulty in reflecting conflicting information
 - Limited research in multilingual MDS, with most models focusing on English

Existing MDS Models on different domain datasets

Dataset		PRIMERA	PEGASUS	LED
	R-1	42.0*	32.0*	17.3*
Multi-News	R-2	13.6^*	10.1*	3.7^{*}
	R-L	20.8^*	16.7*	10.4^*
	R-1	29.1*	27.6*	14.6*
Multi-Xscience	R-2	4.6^*	4.6^{*}	1.9*
	R-L	$\boldsymbol{15.7^*}$	15.3*	9.9^{*}
WikiSum	R-1	28.0*	24.6*	10.5*
	R-2	8.0*	5.5^{*}	2.4^*
	R-L	18.0^*	15.0*	8.6^{*}
	R-1	25.4^{\bullet}	27.4°	25.6^{\bullet}
Rotten Tomatoes	R-2	8.4^{ullet}	9.5	8.0^{\bullet}
	R-L	19.8•	21.1*	19.6^{\bullet}

Experimental Setup

Data:

Dataset used:

M2DS

Baselines:

Fine-tuned PRIMERA, PEGASUS, LD models.

Zero-shot – Llama 2

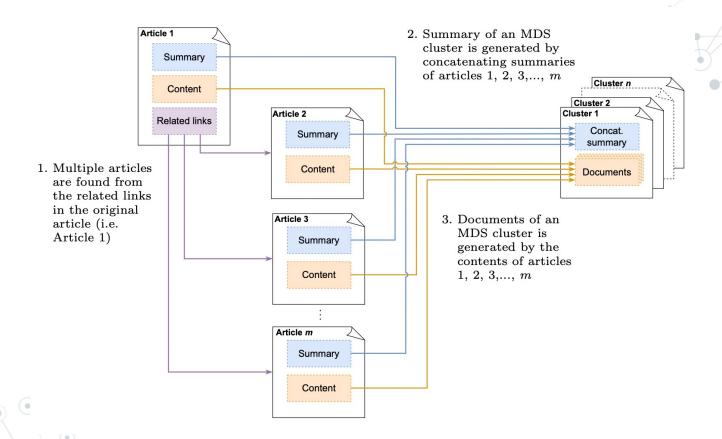
Experimental Process:

Fine-tuned all evaluated models with cross-entropy loss on all datasets. Used Adam optimizer with a learning rate of 5e 5, and without any warm-up or weight decay.

Experimental Environment:

on single A100 GPU.

Dataset Construction



M2DS Dataset

- Data Collection:
 - Sources: M2DS dataset is derived from BBC news articles in five languages: English, Japanese, Korean, Tamil, Sinhala.
 - Timeframe: Articles span from 2010 to 2023, providing a comprehensive dataset for multilingual MDS research.
- Dataset Structure:
 - Ocument-Summary Pairs: Each language includes documentsummary pairs where summaries are generated by concatenating the summaries of related articles
 - Cluster Formation: Articles are grouped into clusters based on related content, and summaries are generated by combining the related summaries.

M2DS Dataset...

- Preprocessing and Data Standardization:
 - Consistency Across Languages: Ensured consistent formatting and preprocessing across all languages to facilitate effective model training.
 - Focus on Clean Data: Structured the dataset to provide clean, organized data suitable for training robust MDS models.
- Baseline Model Evaluation:
 - Models Evaluated: PRIMERA, PEGASUS, and LED.
 - Languages Evaluated: Performance was measured across all five languages in the M2DS dataset.

M2DS Dataset...

Dataset	No. of documents	No. of clusters	Avg. no. of documents per cluster	Domain
Multi-News	56.0k*	16.0k	3.5*	News articles [•]
Multi-Xscience°	40.0k*	14.0k	2.8*	Related work section in scientific articles°
Wikisum	1.5M*	37.5k	40.0*	Wikipedia articles
BigSurvey-MDS [¢]	430.0k*	7.0k	61.4*	Human-written survey papers on various domains [¢]
PEERSUM	11.9k	$1.5\mathrm{k}$	7.8	Peer reviews of scientific publications
$ ext{MS}^2$	$470.0 \mathrm{k}^\dagger$	20.0k	23.5^{\dagger}	Reviews of scientific publications in medical domain [†]
$ \begin{array}{c} \textbf{Rotten Tomato} \\ \textbf{Dataset}^{\uparrow} \end{array} $	$244.0\mathrm{k}^{\ddagger}$	9.0k	26.8^{\ddagger}	Movie reviews [‡]
M2DS	180.0k	51.5k	3.5	News articles
- English	67.0k	17.0k	3.9	
- Tamil	32.0k	10.0k	3.2	
- Japanese	29.0k	11.0k	2.6	
- Korean	27.0k	8.0k	3.4	
- Sinhala	23.5k	5.5k	4.2	

EVALUATION RESULTS

Performance Comparison (English): Zero-shot vs Finetuned

Languago		Models						
Language		DDIMEDA	PRIMERA	PEGASUS	PEGASUS	LED	LED	
		ITIMETICA	(fine-tuned)		(fine-tuned)		(fine-tuned)	
English	R-1	23.6	28.7	18.6	22.5	17.1	20.5	
	R-2	8.8	12.3	9.1	9.9	7.1	10.1	
	R-L	13.6	17.1	12.4	14.7	13.2	15.2	

Performance Comparison (All Languages): Fine-tuned

т		Models							
Language		LEAD-3	RANDOM	CENTROID	PRIMERA	PEGASUS	\mathbf{LED}	Llama 2	
Sinhala	R-1	0.06	5.7	4.5	5.7	4.1	3.6	20.2	
	R-2	0.0	0.05	0.1	2.2	2.1	1.9	6.5	
	R-L	0.06	5.1	3.9	3.2	2.8	2.9	17.3	
Japanese	R-1	3.5	2.3	1.9	6.3	5.7	5.9	7.7	
	R-2	0.0	0.01	0.05	3.2	1.3	1.4	0.8	
	R-L	3.5	1.9	1.7	4.1	3.3	2.7	6.8	
Korean	R-1	2.4	1.4	1.3	5.4	5.5	4.6	8.5	
	R-2	0.4	0.02	0.03	1.1	1.4	0.8	1.0	
	R-L	2.3	1.3	1.3	2.3	2.9	1.9	8.1	
Tamil	R-1	6.8	1.6	2.2	4.4	3.8	3.7	10.2	
	R-2	0.9	0.0	0.06	1.1	0.7	0.4	3.1	
	R-L	6.2	1.6	1.9	2.2	1.7	1.3	9.8	
English	R-1	1.2	6.4	7.6	28.7	22.5	20.5	20.8	
	R-2	0.0	0.05	3.8	12.3	9.9	10.1	13.5	
	R-L	1.1	5.7	7.6	17.1	14.7	15.2	19.2	

Observations

- Llama 2 7B Performance: Outperformed all models, showcasing its robustness across the dataset.
- PRIMERA's Strength in English: Slightly better performance in English, highlighting its ability to capture language-specific nuances.
- Performance Drop in Multilingual Dataset: Models fine-tuned on our dataset showed a noticeable decline in performance compared to English-centric datasets
- LEAD-3 Lower Scores: Our dataset's higher quality, compared to TAC/DUC datasets, is evident from the lower LEAD-3 scores, indicating less bias toward the first three sentences

Model Insights

- Task-Specific Models vs. LLMs: PRIMERA's superior English performance suggests that simpler, task-specific models can outperform large language models (LLMs) like Llama 2 without extensive fine-tuning
- Fine-Tuning Benefits: Fine-tuning improved model performance across the board, with PRIMERA showing the largest increase from 23.6 to 28.7
- Scalability and Transfer Learning: Llama 2's scalability suggests potential for handling larger datasets. Future research should explore Transfer Learning to minimize performance drops and enhance model adaptability across languages

Conclusions and Future Research Directions

- M2DS Dataset: Introduced as a pioneering multilingual MDS dataset, filling the gap in multilingual representation.
- Five-Language Coverage: M2DS stands out with document-summary pairs across five languages, contributing uniquely to MDS research
- Model Performance: Llama 2 7B demonstrated robust performance, while PRIMERA excelled slightly in English, capturing languagespecific nuances effectively

- [1] C. Ma, W. E. Zhang et al., "Multi-document summarization via deep learning techniques: A survey," ACM Computing Surveys (CSUR), 2020
- [2] M. Afsharizadeh, H. Ebrahimpour-Komleh et al., "A survey on multi-document summarization and domain- oriented approaches," Journal of Information Systems and Telecommunication (JIST),
- vol. 1, no. 37, p. 68,2022
- [3] Eberhard, D.M., G.F.S., Fennig, C.D.: Ethnologue: languages of the Americas and the pacific (2023)
- [4] Giannakopoulos, G.: Multi-document multilingual summarization and evaluation tracks in ACL 2013 multiling workshop. In: Proceedings of the Multiling 2013 Workshop on Multilingual Multi-document Summarization, pp. 20–28 (2013)
- [5] Liu, P.J., Saleh, M., et al.: Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198 (2018)
- [6] Liu, S., Cao, J., Yang, R., Wen, Z.: Generating a structured summary of numerous academic papers: dataset and method. arXiv preprint arXiv:2302.04580 (2023)
- [7] Elhadad, M., Miranda-Jim´enez, S., Steinberger, J., Giannakopoulos, G.: Multi-document multilingual summarization corpus preparation, Part 2: Czech, Hebrew. In: Proceedings of the MultiLing 2013 Workshop on Multilingual Multi-document Summarization, pp. 13–19 (2013)
- [8] Xiao, W., Beltagy, I., Carenini, G., Cohan, A.: Primera: pyramid-based masked sentence pre-training for multi-document summarization. In: ACL, pp. 5245–5263 (2022)
- [9] . Dos Santos and M. Gatti, "Deep convolutional neural networks for sentiment analysis of short texts," in Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical papers, 2014, pp. 69–78
- [10] Z. Cao, F. Wei, S. Li, W. Li, M. Zhou, and H. Wang, "Learning summary prior representation for extractive summarization," in ACL, 2015, pp. 829–833
- [11] H. Jin, T. Wang, and X. Wan, "Multi-granularity interaction network for extractive and abstractive multi-document summarization," in Proceedings of the 58th annual meeting of the association
- for computational linguistics, 2020, pp. 6244-6254
- [12] C.-Y. Lin, "Rouge: A package for automatic evaluation of summaries," in Text summarization branches out, 2004, pp. 74–81
- [13]P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer, "Generating wikipedia by summarizing long sequences," arXiv preprint arXiv:1801.10198, 2018
- [14] A. R. Fabbri, I. Li, T. She, S. Li, and D. R. Radev, "Multi-news: A large- scale multi-document summarization dataset and abstractive hierarchical model,"
- [15] M. Koupaee and W. Y. Wang, "Wikihow: A large scale text summarization dataset," arXiv preprint arXiv:1810.09305, 2018
- [16] S. Leon, "Rotten tomatoes movies and critic reviews dataset," https://bit.ly/RTdataset, 2020, (Accessed on 06/24/2023)
- [17]C. Raffel, N. Shazeer, A. Roberts, K. Lee, and others, "Exploring the limits of transfer learning with a unified text-to-text transformer," The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020
- 5485–5551, 2020
 [18] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, "Pegasus: Pre-training with extracted gap-sentences for abstractive summarization," in International Conference on Machine Learning. PMLR, 2020, pp. 11
- 176] 3. Zhang, Y. Zhao, M. Salen, and P. Liu, Pegasus. Pre-training with extracted gap-sentences for abstractive summarization, in international conference on Machine Learning. PMLR, 2020, pp. 1-328–11 339
- 17] W. Xiao, I. Beltagy et al., "Primera: Pyramid-based masked sentence pre-training for multi-document summarization," in ACL, 2022, pp. 5245–5263
- [18] J. Zhang, Y. Zhao, M. Saleh, and P. Liu, "Pegasus: Pre-training with extracted gap-sentences for abstractive summarization," in International Conference on Machine Learning. PMLR, 2020, pp. 11 328–11 339
- [19] I. Beltagy, M. E. Peters, and A. Cohan, "Longformer: The long-document transformer," arXiv preprint arXiv:2004.05150, 2020.
- [20] . Lu, Y. Dong, and L. Charlin, "Multi-xscience: A large- scale dataset for extreme multi-document summarization of scientific articles," in EMNLP, 2020, pp. 8068–8074
- [21] J. DeYoung, S. C. Martinez, I. J. Marshall, and B. C. Wallace, "Do multi-document summarization models synthesize?" arXiv preprint arXiv:2301.13844, 2023
- [22] S. Liu, J. Cao, R. Yang, and Z. Wen, "Generating a structured summary of numerous academic papers: Dataset and method," arXiv preprint arXiv:2302.04580, 2023.
- [23] J. DeYoung, I. Beltagy, M. van Zuylen, B. Kuehl, and L. Wang, "MS^2: Multi-Document Summarization of Medical Studies," in EMNLP, 2021, pp. 7494–7513.

Evaluation Metrics

- O ROUGE [1,2,24]
 - Measures overlap between generated and reference summaries
 - Calculates score based on recall and precision of the generated summary
 - ROUGE-N measures n-gram recall while ROUGE-L uses longest common subsequence algorithm which are variants of ROUGE
 - ROUGE-W, ROUGE-S, and ROUGE-SU are extensions of ROUGE-N that incorporate weighting and skip-bigram statistics
 - BLUE [25]
 - Measures n-gram overlap between generated and reference summaries
 - Gives higher score for more matching n-grams and penalize for incorrect word order
 - Other metrics [1,2]
 - Precision: measures the proportion of generated summary that is relevant to the reference summary
 - Recall: measures the proportion of the reference summary that is covered by the generated summary
 - Pyramid: evaluates summaries based on how many content units they cover, where content units are defined based on their position in the source document.
- [1] C. Ma, W. E. Zhang et al., "Multi-document summarization via deep learning techniques: A survey," ACM Computing Surveys (CSUR), 2020
 [2]M. Afsharizadeh, H. Ebrahimpour-Komleh et al., "A survey on multi-document summarization and domain- oriented approaches," Journal of Information Systems and Telecommunication (JIST), vol. 1, no. 37, p. 68,2022
- [24] C.-Y. Lin, "Rouge: A package for automatic evaluation of summaries," in Text summarization branches out, 2004, pp. 74–81
 [25] Papineni, S. Roukos, T. Ward, and W.-J. Zhu, "BLEU: a Method for Automatic Evaluation of Machine Translation," in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318

Evaluation Metrics

- O ROUGE [1,2,12]
 - ROUGE-N measures n-gram recall while ROUGE-L uses longest common subsequence algorithm which are variants of ROUGE
 - O ROUGE-W, ROUGE-S, and ROUGE-SU are extensions of ROUGE-N that incorporate weighting and skip-bigram statistics

