Task-Aware Representation of Sentences for Generic Text Classification

K Halder, Zalando SE A Akbik, Humboldt-Universitat zu Berlin J Krapac, Humboldt-Universitat zu Berlin R Vollgraf, Humboldt-Universitat zu Berlin

Year of Publication :- 2020 Number of Citations :- 67

Introduction

Introduction

- State of the art for text classification use transformer with linear layer on top.
- Effective for different tasks.
- Suffers from conceptual limitations that affect usage in zero shot or few shot transfer learning.
- In a transfer learning setting, linear layer and the information on it need to be discarded when a new class is added.

Introduction

- Extending a classifier to predict a new class with very few training examples. This uses,
 - Information in the pre-trained decoder (linear layer).
 - Information provided by class labels.
- Evaluation of few shot and zero shot learning abilities of the method.
- TARS (Task-Aware Representation of Sentences).

Related Works

Related Works

- Transfer learning Transferring knowledge from one learned task to another relies on exploiting similarities across tasks.
 - Question Answering [1].
 - Fine-tuning for Text Classification [2].
 - BERT[3] for query-based passage re-ranking[4].
 - Fine tuning BERT for text retrieval [5].
- Zero/few shot learning [6,7].
- 1. Min, S., Seo, M., & Hajishirzi, H. (2017). Question answering through transfer learning from large fine-grained supervision data. arXiv preprint arXiv:1702.02171.
- 2. Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
- 3. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
- Nogueira, R., & Cho, K. (2019). Passage Re-ranking with BERT. arXiv preprint arXiv:1901.04085.
- 5. Dai, Z., & Callan, J. (2019, July). Deeper text understanding for IR with contextual neural language modeling. In *Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval* (pp. 985-988).
- 6. Han, X., Zhu, H., Yu, P., Wang, Z., Yao, Y., Liu, Z., & Sun, M. (2018). Fewrel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation. arXiv preprint arXiv:1810.10147.
- 7. Geng, R., Li, B., Li, Y., Zhu, X., Jian, P., & Sun, J. (2019). Induction networks for few-shot text classification. arXiv preprint arXiv:1902.10482.

Methodology

Methodology

- Universal Binary Text Classification Formulation.
- Cross-Attention between Text and Label.
- Training and Prediction.
- Model Transfer.

Universal Binary Text Classification Formulation

• Goal of any text classification problem is to find a function.

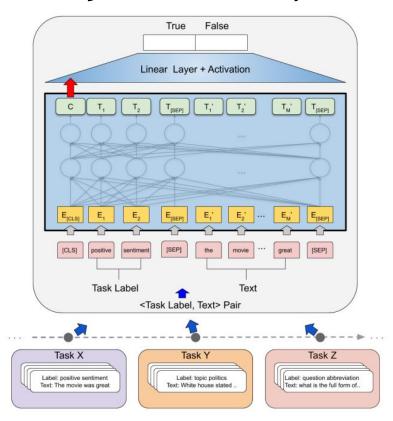
$$f: text \to \{0, 1\}^M$$
 i.e., $f(t) = P(y_i|t) \,\forall i \in \{1...M\}$

 Factorize the text classification problem into a generic binary classification task.

```
f : \langle task \, label, text \rangle \rightarrow \{0,1\} i.e., f(label(y_i), t) = P(True \, | \, y_i, t) \, \forall \, i \in \{1...M\}
```

- <"positive sentiment", "I enjoyed the movie a lot">
- <"topic politics", "The White House announced that [..]">

Universal Binary Text Classification Formulation

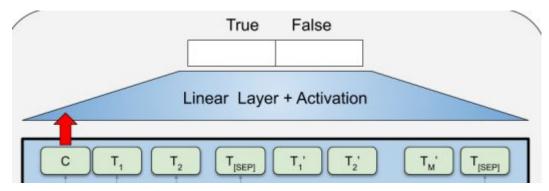


Cross-Attention between Text and Label.

- Additional input to the BERT [3] encoder in the form of class label.
- The encoder itself must learn to understand the connection between a class label and a given text.
- Cross-attention mechanism that transformer architectures supply is made use.
- [CLS], the class label, [SEP] and the text to classify.
- This input sequence is then passed through all self-attention layers in BERT.

Cross-Attention between Text and Label

- [CLS]-token in the final layer as the task label dependent representation of the input text.
- Linear layer to project the H-dimensional tensor produced by the encoder into 2 real-valued logits. A softmax function is used to form a probability distribution over 2 classes i.e., True, and F.



Training and Prediction

- Populate M <task label, text> pairs for each sample text for a text classification task with M classes.
- Increased amount of the training data and thus the computational costs by a factor of M.
- During prediction, true/false predictions are done for all the possible M
 <Label, Text> pairs for the classification task.

```
<"positive sentiment", "I enjoyed the movie a lot"> \to TRUE
<"negative sentiment", "I enjoyed the movie a lot"> \to FALSE
```

Training and Prediction

- For multi-class problems, use the class with maximum confidence (for True)
- Conceptual drawback.
- Followed standard practice and use cross-entropy loss, and optimize all parameters using gradient descent.

Model Transfer

- The entire model (encoder and decoder) can be shared across tasks, as the encoder now performs the matching between label and text.
- Transfer learning to train a new tasks becomes equivalent to continuing to train the same model with different training data.
- Advantages in few-shot learning scenarios.

Model Transfer

- If there is enough similarity between tasks (e.g., the nature of the classification task, and/or word distributions), this formulation even enables a zero-shot scenario.
- Enables multi-task learning across corpora with different annotations as separate prediction heads for each task not required.
- Train the same model using tuples from different tasks and during prediction only request predictions for the labels required.

Computational Complexity

- Traditional text classification requires one forward pass per task for each input text.
- TARS requires M forward passes, one for each input text.
- The model parameters for different tasks are shared, so only one model for all tasks is kept in memory, while traditional models require a separate model for each task.
- Therefore TARS is more suited for training many tasks.

Experiments

Experiments

- How well is TARS able to transfer to new classification tasks with little training data?
- How does semantic distance between source and target task affect the transfer learning abilities of TARS?
- And what are the zeroshot capabilities of TARS?

Datasets

- 2 datasets for the task of topic detection.
 - AGNEWS [8], a corpus of news articles classified into 4 topics.
 - DBPEDIA [8], a corpus of 14 entity topics.
- One dataset in two variants for the task of classifying question types [9], namely TREC-6 with 6 coarse-grained and TREC-50 with 50 fine-grained.
- Two corpora for 5-class sentiment analysis, namely AMAZON-FULL [8] for product reviews and YELP-FULL [8] for restaurant reviews.

^[8] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. *Advances in neural information processing systems*, 28.

^[9] Li, X., & Roth, D. (2002). Learning question classifiers. In COLING 2002: The 19th International Conference on Computational Linguistics.

Label Formulations

- In AGNEWS [8], and DBPEDIA [8] short class labels were manually curated so that they form individual meaningful words.
 - "Sci/Tech" was renamed to "Science Technology".
 - "EducationalInstitution" to "Educational Institution".
- For the sentiment analysis datasets, a numeric rating (1-5) is available along with each sample. They were formulated as textual description.

Transfer learning setup

- Source task and target task.
- The model for the source task is trained using the full dataset for the respective task.
- To evaluate transfer learning capabilities in few-shot and zero-shot scenarios, fine-tune the source model on the target task using only very limited numbers of training examples.
- Reporting accuracy for all the baseline models for different transfer scenarios.

Transfer learning setup

- Started with zero shot scenario, where the model does not see any training example from the target task (i.e., k = 0).
- Exposed the models to increasing number of randomly chosen samples per class from the target task (k = 1, 2, 4, ...)
- Observed how fast the competing models are able to leverage new labeled data.

Comparison

- TARS against two baselines:
 - BERTBASE [3]: Standard non-transfer learning variant in which a pre-trained BERT-model ('bert-base-uncased') is fine tuned with a linear classifier on top directly on the target task.
 - BERTBASE (ft): In this variant, BERT is fine tuned on the source task. The encoder weights are transferred to a new model and initialize a new linear layer, and fine-tune this model again on the target task. This covers the traditional transfer learning mechanism prevalent in the literature.

			Do	main: Senti	ment	Analy	rsis			
	$YELP-FULL \rightarrow AMAZON-FULL$					$Amazon-full \rightarrow Yelp-full$				
M	k	BERTBASE	BERT _{BASE} (ft)	TARS	M	k	BERTBASE	BERT _{BASE} (ft)	TARS	
	0		_	51.8		0	=	_	50.6	
	1	21.8 ± 1.7	27.5 ± 6.5	51.0 ± 0.3		1	$22.5{\pm}3.2$	28.0 ± 5.3	53.0 ± 0.3	
	2	$24.6{\pm}1.1$	36.4 ± 7.0	52.7 ± 0.2		2	$22.6{\pm}1.7$	33.7 ± 4.1	52.2 ± 0.7	
5	4	25.8 ± 1.7	43.2 ± 3.0	52.3 ± 0.5	5	4	26.5 ± 2.3	44.1 ± 1.4	52.0 ± 2.1	
	8	25.4 ± 1.8	$45.0{\pm}1.1$	49.9 ± 1.7		8	31.9 ± 2.0	46.5 ± 2.0	53.3 ± 1.1	
	10	29.0 ± 1.5	$45.2{\pm}1.0$	51.6 ± 0.4		10	32.8 ± 2.1	47.2 ± 3.0	52.5 ± 0.3	
	100	50.7 ± 0.9	$53.2{\pm}0.4$	53.4 ± 0.4		100	53.9 ± 1.8	55.8 ± 0.5	56.4 ± 0.7	

Domain: Topic Classification

$DBPEDIA \to AGNEWS$					$AGNEWS \rightarrow DBPEDIA$					
\overline{M}	k	BERT _{BASE}	BERT _{BASE} (ft)	TARS	M	k	BERT _{BASE}	BERT _{BASE} (ft)	TARS	
	0		-	52.4		0		; _ ;	51.2	
	1	41.6 ± 6.5	66.6 ± 4.6	72.1 ± 3.4		1	45.4 ± 2.6	45.2 ± 3.7	76.6 ± 2.7	
	2	56.0 ± 3.3	69.8 ± 2.7	74.3 ± 4.5		2	76.4 ± 2.4	66.0 ± 4.2	81.7 ± 3.8	
4	4	70.8 ± 5.6	$78.5{\pm}2.3$	80.2 ± 0.9	14	4	$91.3 {\pm} 0.5$	84.4 ± 2.7	90.1 ± 1.3	
	8	78.3 ± 1.3	80.1 ± 2.1	81.0 ± 0.8		8	96.5 ± 0.4	93.5 ± 1.4	94.8 ± 0.7	
	10	80.1 ± 2.9	82.0 ± 0.6	83.5 ± 0.2		10	97.6 ± 0.3	95.8 ± 0.1	96.6 ± 0.2	
	100	87.8 ± 0.4	86.9 ± 0.4	$86.7{\pm0.3}$		100	98.7 ± 0.0	98.4 ± 0.0	98.4 ± 0.0	

	Domain: Question Type Classification								
$TREC-6 \rightarrow TREC-50$									
M	k	BERTBASE	BERT _{BASE} (ft)	TARS					
	0	_	<u></u>	53.4					
	1	11.4 ± 3.7	40.2 ± 4.8	57.2 ± 1.0					
	2	29.1 ± 4.7	74.5 ± 1.4	82.0 ± 2.6					
50	4	47.9 ± 5.2	78.6 ± 1.3	82.7 ± 2.3					
	8	64.4 ± 1.6	81.6 ± 1.5	86.2 ± 2.9					
	10	67.1 ± 2.9	83.2 ± 0.7	85.1 ± 1.0					
	100	89.6 ± 0.6	91.3 ± 0.2	91.4 ± 0.5					

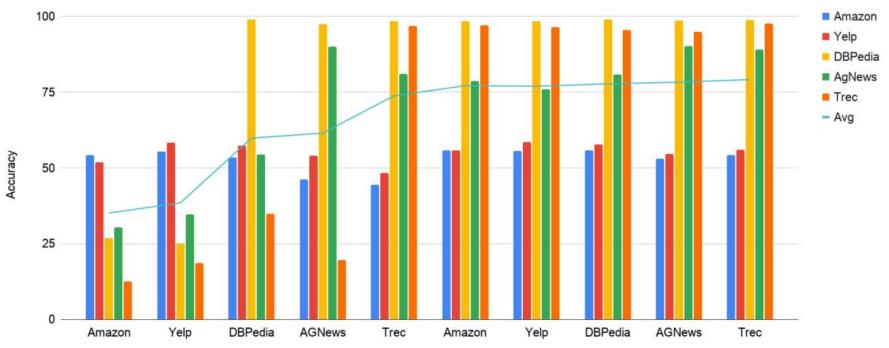
Model	Model Size	AGNEWS	DBPEDIA	
GPT-2 (2019)	117M	40.2*	39.6*	
TARS	110M	52.4	51.2	

				Cross Doma	ain Tı	ansfer			
D	BPED	IA (Topic)→ '	TREC-6 (Question	on Type)	AN	1AZON	-FULL (Sentin	$ment) \rightarrow AGNEW$	s (Topic)
M	k	BERT _{BASE}	BERT _{BASE} (ft)	TARS	M	k	BERTBASE	BERT _{BASE} (ft)	TARS
	0	_	_	43.0		0	-	=	28.0
	1	26.4 ± 4.2	38.5 ± 3.9	45.7 ± 6.2		1	43.8 ± 4.0	29.8 ± 0.7	42.9 ± 3.5
	2	36.9 ± 6.0	32.8 ± 7.1	62.9 ± 5.7		2	59.6 ± 1.1	37.1 ± 4.3	49.5 ± 1.0
6	4	43.5 ± 3.2	45.3 ± 3.0	62.7 ± 2.2	6	4	70.4 ± 4.6	49.0 ± 2.8	63.7 ± 6.4
	8	56.4 ± 3.1	57.2 ± 1.8	61.9 ± 1.9		8	80.5 ± 0.3	57.4 ± 0.8	79.2 ± 0.2
	10	$58.8 {\pm} 6.6$	63.7 ± 2.3	64.7 ± 1.0		10	81.4 ± 0.7	65.4 ± 6.3	79.6 ± 0.7
	100	92.5 ± 0.8	93.4 ± 1.0	91.6 ± 0.9		100	88.0 ± 0.1	86.9 ± 0.4	86.6 ± 0.6

Ablation Study: New Class Without Training Data added

Don	nain: 7	Topic Classific	cation w/ New Clas	s Addition
		DBPEDIA-	13 → DBPEDIA	
M	k	BERTBASE	BERT _{BASE} (ft)	TARS
	0	11 1	8 7-4 8	0.60
	1	0.05	0.40	0.72
	2	0.58	0.73	0.85
14	4	0.91	0.89	0.96
	8	0.93	0.91	0.95
	10	0.93	0.94	0.96
	100	0.98	0.98	0.99

Knowledge Retention Experiment



Training Sequence

Conclusion

- Proposed TARS architecture to address key shortcomings of transfer learning approaches.
- The proposed TARS architecture captures the similarity between an input text and the task label to perform text classification.
- TARS is capable of making zero-shot predictions in multiple text classification tasks.
- TARS adapts to a new domain faster than competitive baseline models in few-shot learning settings.

References

- 1. Min, S., Seo, M., & Hajishirzi, H. (2017). Question answering through transfer learning from large fine-grained supervision data. *arXiv preprint arXiv:1702.02171*.
- 2. Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. *arXiv preprint arXiv:1801.06146*.
- 3. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint *arXiv*:1810.04805.
- 4. Nogueira, R., & Cho, K. (2019). Passage Re-ranking with BERT. arXiv preprint arXiv:1901.04085.
- 5. Dai, Z., & Callan, J. (2019, July). Deeper text understanding for IR with contextual neural language modeling. In *Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval* (pp. 985-988).
- 6. Han, X., Zhu, H., Yu, P., Wang, Z., Yao, Y., Liu, Z., & Sun, M. (2018). Fewrel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation. *arXiv preprint arXiv:1810.10147*.
- 7. Geng, R., Li, B., Li, Y., Zhu, X., Jian, P., & Sun, J. (2019). Induction networks for few-shot text classification. *arXiv* preprint *arXiv*:1902.10482.
- 8. Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. *Advances in neural information processing systems*, *28*.
- 9. Li, X., & Roth, D. (2002). Learning question classifiers. In *COLING 2002: The 19th International Conference on Computational Linguistics*.