
Sinhala-English Word Embedding Alignment: Introducing Datasets and Benchmark for a

Low Resource Language

Kasun Wickramasinghe and Nisansa de Silva

Introduction

- Embeddings have become a primary ingredient in many flavours of Natural Language
 Processing (NLP) tasks.
- Multilingual embeddings share a common embedding space for many languages
- Due to the scarcity of parallel training data, low-resource languages such as Sinhala, still tend to focus more on monolingual embeddings instead of multilingual embeddings.
- Embedding alignment solves the problem of using monolingual embeddings for multilingual tasks.
- Even Though few previous research have been carried out for Sinhala word embedding alignment [1, 2], still we lack of a proper baseline research for that area.
- One major reason for less research for such areas is not having proper free and publicly available datasets for low-resource NLP tasks.

^[1] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. 2016. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In International Conference on Learning Representations.

^[2] Anushika Liyanage, Surangika Ranathunga, and Sanath Jayasena. 2021. Bilingual lexical induction for sinhala-english using cross lingual embedding spaces In 2021 Moratuwa Engineering Research Conference (MERCon), pages 579–584.

Our Contributions

- Align Sinhala and English word embedding spaces based on available alignment techniques.
- Introduce a benchmark for Sinhala language embedding alignment.
- Introduce Sinhala-English alignment datasets.
 - These datasets serve as the anchor datasets for supervised word embedding alignment.
- Simple statistical approach to create word-level alignment datasets using parallel corpora
- Make all our findings and resources open and publicly available for the community

Alignment Dataset Creation

- Parallel aligned dataset is needed for the supervised word embedding alignment.
- For the Sinhala-English pair there is no MUSE[3]-like datasets available at the moment.
- We experimented two approaches to build a MUSE-like alignment datasets for the Sinhala-English pair.
 - Building a dataset from Si-En parallel corpora
 - Building a dataset using an available Si-En dictionary dataset

Alignment Dataset Creation - approach 1

- This approach is building a word dictionary using available parallel corpora.
- Our assumption is,
 - \circ "In a parallel corpus, the corresponding word translation pairs should co-occur."
 - o In other words, "If two source and target language words co-occur more often, then there is a high chance for them to be a translation pair."
- When large enough parallel data points from parallel corpora are available, this measurement tends to be more accurate (statistical sampling)
- The optimization criterion is given in the next slide
- We performed this experiment to evaluate the feasibility of this new method and, not tried hard on creating a dataset using this method

Alignment Dataset Creation - approach 1 (cont.)

$$\begin{array}{l} \max_{src,tgt} \left[P\left(src|tgt\right) P\left(tgt|src\right) \right] \\ \Longrightarrow \max_{src,tgt} \left[\frac{P(src,tgt)^2}{P(source)P(target)} \right] \\ \Longrightarrow \max_{src,tgt} \left[\frac{count(src,tgt)^2}{count(src).count(tgt)} \right] \end{array}$$

Where,

- **P(target|source)** Finding the target word in the context of the source word (corresponding translation) given the source word
- P(source|target) Finding the source word in the context of the target word (corresponding translation) given the target word

Alignment Dataset Creation - approach 2

- Take a subset of an available large-scale dictionary dataset [4] and form the alignment datasets
- We noticed that our first approach is a promising one and gave competitive results with the dataset created using the available dictionary dataset

Dataset	Retrieval				
Dataset	NN	CSLS			
Prob-based-dict	13.6	16.7			
En-Si-para-cc-5k	16.4	20.4			

[4] Kasun Wickramasinghe and Nisansa De Silva. 2023. Sinhala-english parallel word dictionary dataset. In 2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), pages 61–66.

Sinhala-English Embedding Alignment

- We aligned the Sinhala and English Fasttext word embedding models using the available supervised alignment techniques
- Evaluated the alignment quality using the word translation precisions

	wiki						cc					
Method	En-Si			Si-En			En-Si			Si-En		
	P@1	P@5	P@10									
Procrustes + NN	11.4	26.4	33.2	12.5	29.6	37.1	16.4	35.7	43.6	21.3	39.9	47.4
Procrustes + CSLS	14.8	31.5	39.8	14.4	27.6	33.8	20.4	39.9	49.1	18.0	31.9	37.4
Procrustes+ refine + NN	13.7	25.5	31.3	15.8	33.0	39.3	19.3	34.9	42.3	28.9	45.7	51.3
Procrustes+ refine + CSLS	16.1	29.0	35.7	16.9	31.0	36.7	20.9	38.6	46.3	21.7	36.6	41.6
RCSLS + spectral + NN	14.8	29.7	36.8	13.3	33.7	42.8	21.4	40.2	48.5	23.3	44.8	52.7
RCSLS + spectral + CSLS	17.1	33.1	41.0	15.1	29.4	35.1	21.5	41.7	49.1	19.2	34.9	41.8
RCSLS + NN	15.3	30.4	37.5	13.2	34.1	43.3	21.5	40.9	48.3	23.3	44.9	53.2
RCSLS + CSLS	17.5	33.4	41.3	15.5	29.3	35.9	22.6	42.3	49.1	19.4	35.4	42.1

Sinhala-English Embedding Alignment - (cont.)

- Here is a comparison of the top-1 word translation precision of different language pairs and our work.
- All the other pairs are high resource languages except Sinhala which is a low resource language.
- All the training sets are of 5000 unique source words and, test sets are of 1500 unique source words.

Method	Joulin et al. (2018a)										Ours	
	en-es	es-en	en-fr	fr-en	en-de	de-en	en-ru	ru-en	en-zh	zh-en	en-si	si-en
Adv.+refine	81.7	83.3	82.3	82.1	74.0	72.2	44.0	59.1	32.5	31.4		22
Wass. Proc.+refine	82.8	84.1	82.6	82.9	75.4	73.3	43.7	59.1	22	2	_	70
Procrustes	81.4	82.9	81.1	82.4	73.5	72.4	51.7	63.7	42.7	36.7	20.4	18.0
Procrustes+ refine	82.4	83.9	82.3	83.2	75.3	73.2	50.1	63.5	40.3	35.5	20.9	21.7
RCSLS + spectral	83.5	85.7	82.3	84.1	78.2	75.8	56.1	66.5	44.9	45.7	21.5	19.2
RCSLS	84.1	86.3	83.3	84.1	79.1	76.3	57.9	67.2	45.9	46.4	22.6	19.4

Comparison with Previous Related Work

- Here is a comparison between our work and Smith et al.[1]s' work
- Si→En direction only and also provided the alignment matrix associated with the alignment.
- Smith et al.s' alignment datasets are not available to public and therefore this comparison may not reflect a genuine comparison

Dataset		Scores	
Dataset	@1	@5	@10
Smith et al. (2016): On their original eval dataset*	22	40	45
Smith et al. (2016)+NN: On our eval dataset [†]	25	44	50
Smith et al. (2016)+CSLS: On our eval dataset [†]	26	43	49
our work best results	20	42	51

^[1] Samuel L Smith, David HP Turban, Steven Hamblin, and Nils Y Hammerla. 2016. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In International Conference on Learning Representations.

Impact of the Alignment Dataset Size

- We experimented the impact of the alignment dataset size
- For all the previous comparisons we used 5000 unique words for the alignment dataset (that was the size used for other language pairs [5])

Dataset	Unique Cue	Retrieval								
	Unique Src within 200k		NN		CSLS					
		@1	@5	@10	@1	@5	@10			
En-Si-para-wiki-5k	5000	11.4	26.4	33.2	14.8	31.5	39.8			
En-Si-para-wiki-full	27846	17.0	36.1	45.1	20.2	42.4	50.9			
En-Si-para-cc-5k	5000	16.4	35.7	43.6	20.4	39.9	49.1			
En-Si-para-cc-full	27856	17.4	37.9	45.5	20.9	42.4	50.8			

Discussion and Future Work

- We have set a baseline for the Sinhala word embedding alignment with this paper.
- We have experimented only with the available supervised alignment techniques here.
- The alignment dataset directly affects the quality of the alignment.
- Therefor, we are willing to extend our research towards unsupervised and deep learning based techniques to further improve the alignment quality of the embeddings

Thank You!

Questions?

Sinhala Word Frequency Analysis

- We used the following there Sinhala corpora for the frequency analysis
 - o Corpus by Upeksha et al. [12, 13] which was created using web crawling [link]
 - The second one is a corpus based on Jathaka Stories [link]
 - The third one is based on web crawled news articles [link]
- We selected these corpora to cover a diverse range of domains so that the domain bias is minimised
- Word counts of the three corpora:
 - Total words 251,621,888 (251.6M)
 - Unique words 2,168,118 (2M)

[12] D. Upeksha, C. Wijayarathna, M. Siriwardena, L. Lasandun, C. Wimalasuriya, N. De Silva, and G. Dias, "Implementing a corpus for sinhala language," in Symposium on Language Technology for South Asia 2015, 2015.

[13] D. Ūpeksha, C. Wijayarathna, M. Siriwardena, L. Lasandun, C. Wimalasuriya, N. de Silva, and G. Dias, "Comparison between performance of various database systems for implementing a language corpus," in International Conference: Beyond Databases, Architectures and Structures. Springer, 2015, pp. 82–91.

Available En-Si Parallel Datasets

Sentence/Document Level

- FLORES [14]
- NLLB [15]
- Opus Parallel Corpus
- Other [16, 17]

Word/Token Level

- <u>Subasa</u> [18] ~36000 entries
- https://github.com/lsurie/Text-Classification-Module/blob/master/Dataset/en-sinhala%20dictionary.csv (Text-Classification-Module) 36429 entries
- https://github.com/gdgsl/sid/tree/master/assets/dictionary (Dictionary App) 133960 entries (85532 single word entries)
- https://github.com/sinhalatypography/English-Sinhala-Dictionary
- https://github.com/laknath/Sinhala-Dictionary (Sinhala only not a parallel dictionary)

[14] Japan, 2008, pp. 20–23. F. Guzm´an, P.-J. Chen, M. Ott, J. Pino, G. Lample, P. Koehn, V. Chaudhary, and M. Ranzato, "The FLORES evaluation datasets for low-resource machine translation: Nepali–English and Sinhala–English," in EMNLPIJCNLP, Nov. 2019.

[15] M. R. Costa-juss`a, J. Cross, O. C, elebi, M. Elbayad, K. Heafield, K. Heffernan, E. Kalbassi, J. Lam, D. Licht, J. Maillard et al., "No language left behind: Scaling human-centered machine translation," arXiv preprint arXiv:2207.04672, 2022. [16] R. A. Hameed, N. Pathirennehelage, A. Ihalapathirana, M. Z. Mohamed, S. Ranathunga, S. Jayasena, G. Dias, and S. Fernando, "Automatic creation of a sentence aligned sinhala-tamil parallel corpus," in Proceedings of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016), 2016, pp. 124–132

[16] M. Ba non, P. Chen, B. Haddow, K. Heafield, H. Hoang, M. Espla-Gomis, M. L. Forcada, A. Kamran, F. Kirefu, P. Koehn et al., "Paracrawl: Web-scale acquisition of parallel corpora," in ACL, 2020, pp. 4555–4567.

[17]] C. Vasantharajan and U. Thayasivam, "Tamizhi-net ocr: Creating a quality large scale tamil-sinhala-english parallel corpus using deep learning based printed character recognition (pcr)," arXiv preprint arXiv:2109.05952, 2021.

[18] A. Wasala and R. Weerasinghe, "Ensitip: a tool to unlock the english web," in 11th international conference on humans and computers, Nagaoka University of Technology, Japan, 2008, pp. 20–23.

Stopword Removal

- English <u>Spacy English stop-words list</u>
- Sinhala Work by Lakmal et al. [19]

Zoom

Display name: 0072_Kasun_Wickramasinghe

Attendance: 1570906653_Kasun Wickramasinghe