Symbolic Discovery of Optimization Algorithms

Xiangning Chen

Chen Liang

Da Huang

Esteban Real

Kaiyuan Wang

Yao Liu

Hieu Pham

Xuanyi Dong

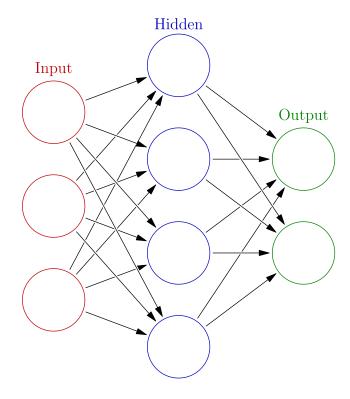
Thang Luong

Cho-Jui

Hsieh Yifeng

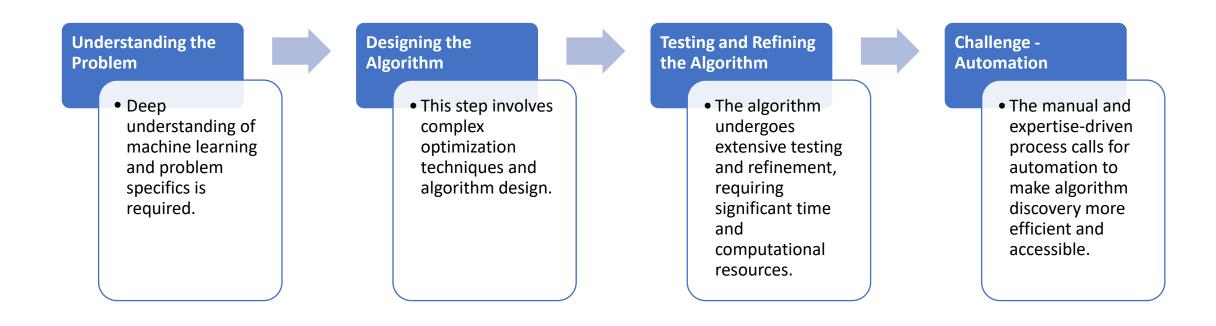
Lu Quoc

V. Le

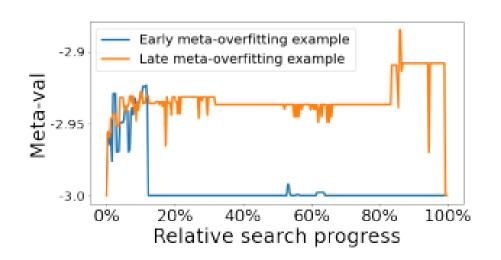

Content

- Introduction
- Problem Statement
- Objective of the Paper
- Methodology Overview
- Lion The New Algorithm
- Key Features of Lion
- Comparison with Adam
- Performance of Lion

- Limitations of Lion
- Lion Algorithm: Public Accessibility and Practical Applications
- Implications of the Research
- Future Work
- Summary
- References
- Q&A Slide


Introduction

- Optimization algorithms play a crucial role in training deep neural networks.
- Deep neural networks are a cornerstone of modern artificial intelligence.
- Discovering efficient optimization algorithms for these networks is a complex task.
- The paper 'Symbolic Discovery of Optimization Algorithms' introduces a novel method for automating this discovery process, leading to the creation of a new, efficient algorithm named Lion.


Problem Statement

Discovering efficient optimization algorithms is challenging. Automation can help.

Objective of the Paper

• The paper presents a method for automated discovery of optimization algorithms using program search.

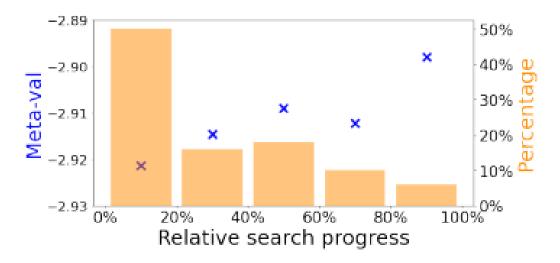


Figure 1: X. Chen et al., "Symbolic Discovery of Optimization Algorithms," arXiv:2302.06675v4 [cs.LG], May 2023.

Methodology Overview

 The method involves searching through a space of possible programs to find an efficient optimization algorithm. Algorithm
Discovery as
Program Search

Analysis of Properties and Limitations

Search Techniques

Performance Testing

Algorithm
Simplification and
Selection

Lion - The New Algorithm

• The method led to the discovery of Lion, a simple and efficient optimization algorithm. Figure 1: Left: ImageNet fine-tuning accuracy vs.

Figure 1: **Left**: ImageNet fine-tuning accuracy vs. pretraining cost of ViT models on JFT-300M. **Right**: FID of the diffusion model on 256² image generation. We use DDPM for 1K steps w/o guidance to decode image. As a reference, the FID of ADM is 10.94 (Dhariwal and Nichol, 2021).

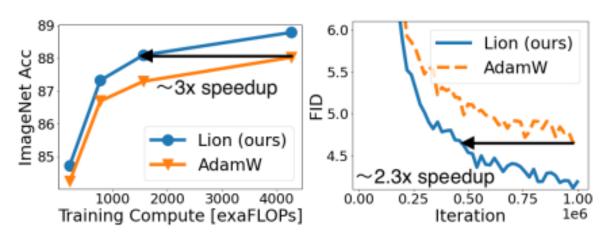


Figure 2: X. Chen et al., "Symbolic Discovery of Optimization Algorithms," arXiv:2302.06675v4 [cs.LG], May 2023.

Comparison with Adam

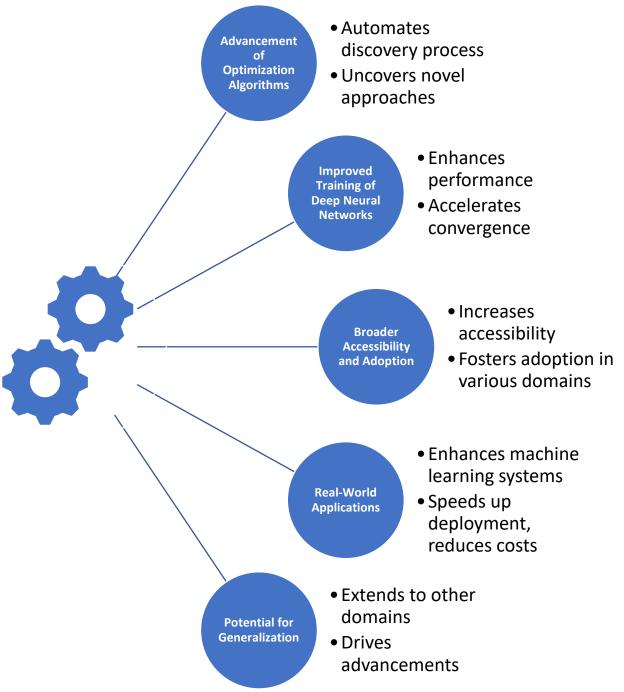
Parameter	Lion	Adam	
Simplicity and Efficiency	Simpler with fewer hyperparameters. Does not require epsilon and factorization-related hyperparameters.	More complex with more hyperparameters. Requires epsilon and factorization-related hyperparameters.	
Learning Rate and Weight Decay	Requires a smaller learning rate and larger weight decay to maintain a similar strength as Adam.	Requires a larger learning rate and smaller weight decay.	
Only saves the momentum, resultir a smaller memory footprint. Has fa runtime due to its simplicity.		Saves more than just the momentum, resulting in a larger memory footprint. Slower runtime due to complexity.	
Performance	hance More robust to different hyperparameter choices. Performs better on various tasks, especially with large batch sizes.		
Limitations	Performs similarly to Adam on certain tasks. Performance gain decreases when strong augmentations are utilized.	Performs better on certain tasks. Performance gain may vary depending on the task and batch size.	

Performance of Lion

 Lion demonstrated outstanding performance across various models and tasks.

Figure 3: X. Chen et al., "Symbolic Discovery of Optimization Algorithms," arXiv:2302.06675v4 [cs.LG], May 2023.

			D1 A					
Model	#Params	Optimizer	RandAug + Mixup	ImageNet	ReaL	V2		
Train from scratch on ImageNet								
ResNet-50	25.56M	SGD	×	76.22	82.39	63.93		
		AdamW		76.34	82.72	64.24		
		Lion		76.45	82.72	64.02		
Mixer-S/16	10.503.6	AdamW	X	69.26	75.71	55.01		
	18.53M	Lion		69.92	76.19	55.75		
Mixer-B/16	50.00 3. 6	AdamW	×	68.12	73.92	53.37		
	59.88M	Lion		70.11	76.60	55.94		
ViT-S/16 22		AdamW	х	76.12	81.94	63.09		
	22.05M	Lion		76.70	82.64	64.14		
	22.05141	AdamW	✓	78.89	84.61	66.73		
		Lion		79.46	85.25	67.68		
ViT-B/16	86.57M .	AdamW	×	75.48	80.64	61.87		
		Lion		77.44	82.57	64.81		
		AdamW	,	80.12	85.46	68.14		
		Lion	•	80.77	86.15	69.19		
CoAtNet-1	42.23M	AdamW	✓	83.36 (83.3)	-	-		
		Lion		84.07	-	-		
CoAtNet-3 1	166.0704	AdamW	✓	84.45 (84.5)	-	-		
	166.97M	Lion		84.87	-	-		
Pre-train on ImageNet-21K then fine-tune on ImageNet								
ViT-B/16 ₃₈₄	86.86M	AdamW	84.12 (83.97)	88.61 (88.35)	73.81			
		Lion	X	84.45	88.84	74.06		
ViT-L/16 ₃₈₄	304.72M	AdamW	х	85.07 (85.15)	88.78 (88.40)	75.10		
		Lion	85.59	89.35	75.84			


Limitations of Lion

- 1. Performance on Certain Tasks Lion's performance gain is minimal on ConvNets and decreases with strong augmentations.
- 2. Performance with Small Batch Sizes Lion's performance is similar to AdamW for small batch sizes (<64).
- **3. Performance on Large Datasets** Lion's performance is comparable to AdamW on tasks with massive, high-quality datasets.
- **4. Limitations of Search** Lion's search space is biased towards first-order optimization algorithms and lacks functions for advanced second-order algorithms.
- **5. Simplistic Program Structure** Lion's program structure is simplistic and could benefit from incorporating advanced program constructs.

Lion Algorithm: Public Accessibility and Practical Applications

- Public Availability: A pytorch implementation of Lion is publicly available (https://github.com/lucidrains/lion-pytorch)
- Real-World Application: Lion has been successfully deployed in production systems such as Google's search ads CTR model.
- Performance in Various Tasks: Lion has shown outstanding performance across a range of models (Transformer, MLP, ResNet, UNET, and Hybrid) and tasks (image classification, vision-language contrastive learning, etc.).

Implications of the Research

Future Work

- Further Exploration of Search Space
- Efficiency Improvements
- Application to Other Domains
- Generalization and Transfer Learning

Summary

- Automates the discovery process of optimization algorithms.
- Introduces Lion, a new algorithm for efficient training of deep neural networks.
- Simplifies algorithm discovery, making it more accessible to researchers and practitioners.
- Shows strong performance and potential for generalization.
- Implications include advancements in optimization algorithms, improved deep neural network training, and real-world applications.
- Offers possibilities for broader adoption and enhanced machine learning systems.

References

• X. Chen et al., "Symbolic Discovery of Optimization Algorithms," arXiv:2302.06675v4 [cs.LG], May 2023.

Q&A