ESCAPING THE BIG DATA PARADIGM WITH COMPACT TRANSFORMERS

ALI HASSANI, STEVEN WALTON, NIKHIL SHAH, ABULIKEMU ABUDUWEILI, JIACHEN LI, HUMPHREY SHI

We will cover...

INTRODUCTION

(CNN)

- Convolutional neural networks (CNNs)[1]
- Standard for computer vision[2]
 - Invariance to spatial translations
 - Low relational inductive bias
- Improved with residual connections[3]
- Efficiency[4]
 - Sparse interaction
 - Weight sharing
 - Equivariant representations
 - [1] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989..
 - [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.
 - [3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
 - [4] Ian Goodfellow, YoshuaBengio, AaronCourville, and Yoshua Bengio. Deep learning. MIT press Cambridge, 2016.

INTRODUCTION

(TRANSFORMERS)

- Attention is All You Need[5]
- Originated in natural language processing
- First major usage on vision: Vision Transformer (ViT)[6]
 - Large-scale training can trump inductive biases
 - "Transformers lack some of the inductive biases inherent to CNNs, such as translation equivariance and locality, and therefore do not generalize well when trained on insufficient amounts of data."
- "Data hungry" paradigm
 - Larger models
 - Larger datasets
- Training transformers from scratch is impossible in most cases

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30:5998–6008, 2017.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

RELATED WORKS

- Vision Transformer[6]
 - Image Tokenization
 - Positional Embedding
 - Transformer Encoder
 - Classification
- Data-Efficient Transformers
 - Data-Efficient Image Transformers (DeiT)[7]
 - Tokens-to-token ViT (T2T- ViT)[8]
- Convolution-inspired Transformers
 - ConViT[9]

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[7] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Je gou. Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877, 2020.

[8] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.

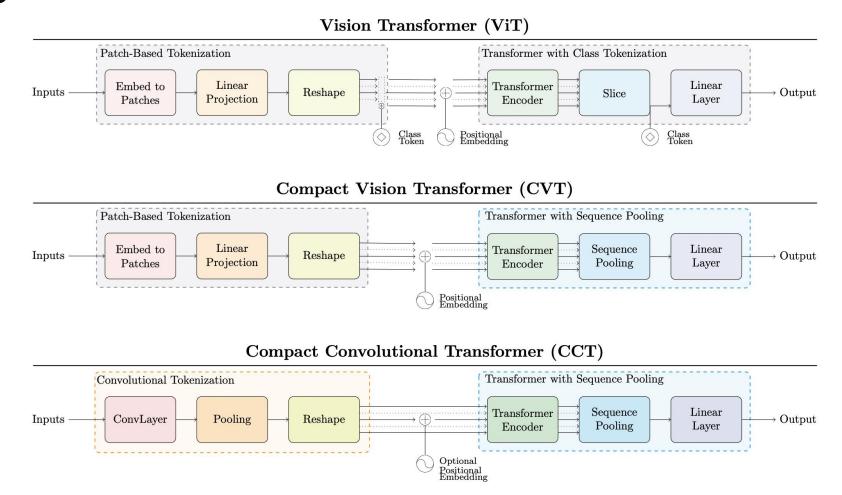


Figure 1: Comparing ViT (top) to CVT (middle) and CCT (bottom). CVT can be thought of as an ablated version of CCT, only utilizing sequence pooling and not a convolutional tokenizer. CVT may be preferable with more limited compute, as the patch-based tokenization is faster.

TRANSFORMER-BASED BACKBONE

- Follow the original Transformer[5] and original Vision Transformer (ViT)[6]
- Encoder consists of transformer blocks
 - Multi-Headed Self-Attention (MHSA) layer
 - Multi-Layer Perceptron (MLP) block
- Layer Normalization
- GELU activation
- Dropout
- Positional embeddings
 - Learnable or sinusoidal (sine wave), both of which are effective.
 - [5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30:5998–6008, 2017.
 - [6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

SMALL AND COMPACT MODELS

- Smaller and more compact vision transformers
 - ViT-Base
 - 12 layer transformer encoder
 - 12 attention heads
 - 64 dimensions per head
 - 2048-dimensional hidden layers in the MLP blocks
 - 85M parameters total
- Proposed variants (ViT-Lite)
 - 2 layers
 - 2 heads
 - 128-dimensional hidden layers
 - Smallest has 0.22M parameters in total
 - Largest only has 3.8M parameters

SeqPool

- Traditionally, to map the sequential outputs to a singular class index
 - Transformer-based classifiers follow BERT[10]
 - Global average pooling
- SeqPool attention-based method which pools over the output sequence of tokens.
 - Output sequence contains information across different parts of the input (improve performance)
 - No additional parameters compared to learnable token
 - One less token being forwarded (decreases computation)

SeqPool

- Maps output sequence using $T: \mathbb{R}^{b \times n \times d} \mapsto \mathbb{R}^{b \times d}$ given $\mathbf{x}_L = \mathrm{f}(\mathbf{x}_0) \in \mathbb{R}^{b \times n \times d}$
 - \bullet x_L output of an L layer transformer encoder f
 - b batch size
 - n sequence length
 - d the total embedding dimension
- ullet \mathbf{x}_{L} is then fed to a linear layer $\, \mathbf{g}(\mathbf{x}_L) \in \mathbb{R}^{d imes 1} \,$ with Softmax activation

$$\mathbf{x}_{L}' = \operatorname{softmax}\left(\mathbf{g}(\mathbf{x}_{L})^{T}\right) \in \mathbb{R}^{b \times 1 \times n}$$

• This generates an importance weighting for each input token, applied as follows

$$\mathbf{z} = \mathbf{x}_L' \mathbf{x}_L = \operatorname{softmax} \left(\mathbf{g}(\mathbf{x}_L)^T \right) \times \mathbf{x}_L \in \mathbb{R}^{b \times 1 \times d}$$

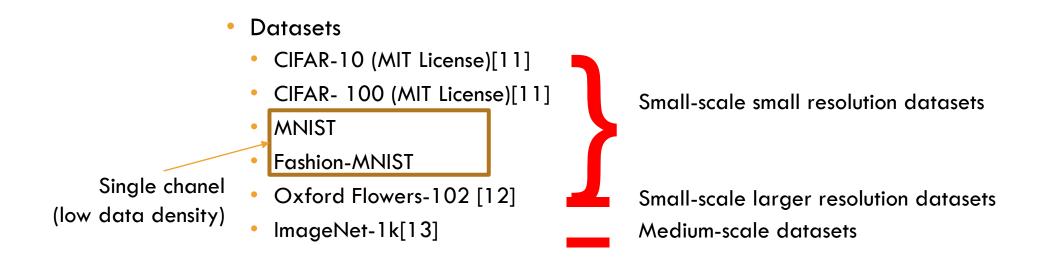
• The output $z \in \mathbb{R}^{b imes d}$ is produced by flattening

Convolutional Tokenizer

- Replace patch and embedding with a simple convolutional block
 - Introduces inductive bias
 - Single convolution
 - ReLU activation
 - Max pooling
- ullet Given an image or feature map $\mathbf{x} \in \mathbb{R}^{H imes W imes C}$

$$\mathbf{x}_0 = \text{MaxPool}(\text{ReLU}(\text{Conv2d}(\mathbf{x})))$$

- Conv2d operation has d filters (embedding dimension of the transformer backbone)
- The convolution and maxpool can overlap (injecting inductive biases)
- Advantages
 - Maintains locally spatial information.
 - No longer tied to the input resolution strictly divisible by the pre-set patch size
 - Performance gains
 - Gives more flexibility toward removing the positional embedding in the model



^[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

^[12] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008

^[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. leee, 2009.

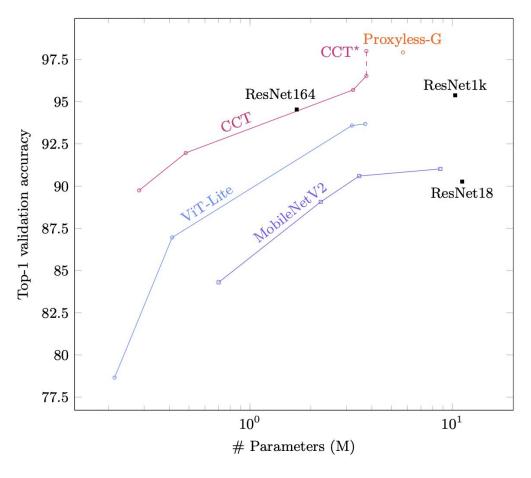


Figure 2: CIFAR-10 accuracy *vs.* model size (sizes < 12M). CCT was trained longer.

Existing

Pı	roposed	
	OPO3EG	

Model	C-10	C-100	Fashion	MNIST	# Params	MACs	Model	C-10	C-100	Fashion	MNIST #	# Params	MACs
Convolutional Netwo	orks (Desig	ned for Ima	ageNet)				Vision Transform	ers					
ResNet18	90.27%	66.46%	94.78%	99.80%	11.18 M	0.04 G	ViT-Lite-7/16	78.45%	52.87%	93.24%	99.68%	3.89 M	0.02 G
ResNet34	90.51%	66.84%	94.78%	99.77%	21.29 M	$0.08~\mathrm{G}$	ViT-Lite-7/8	89.10%	67.27%	94.49%	99.69%	3.74 M	$0.06~\mathrm{G}$
MobileNetV2/0.5	84.78%	56.32%	93.93%	99.70%	0.70 M	< 0.01 G	ViT-Lite-7/4	93.57%	73.94%	95.16%	99.77%	3.72 M	$0.26~\mathrm{G}$
MobileNetV2/2.0	91.02%	67.44%	95.95%	99.70% $99.75%$	8.72 M	0.01 G 0.02 G	Compact Vision T	ransformers					
Convolutional Netwo	orks (Desig	ned for CII	FAR)				CVT-7/8	89.79%	70.11%	94.50%	99.70%	3.74 M	0.06 G
ResNet56[16]	94.63%	74.81%	95.25%	99.27%	0.85 M	0.13 G	CVT-7/4	94.01%	76.49%	95.32%	99.76%	3.72 M	$0.25~\mathrm{G}$
ResNet110[16]	95.08%	76.63%	95.23%	99.28%	1.73 M	0.13 G 0.26 G	Compact Convolu	tional Transfe	ormers				
ResNet1k-v2*[17]	95.38%	_	_	_	10.33 M	$1.55~\mathrm{G}$	CCT-2/3×2	89.75%	66.93%	94.08%	99.70%	0.28 M	0.04 G
Proxyless-G[5]	97.92%	_	_	-	5.7 M		CCT-7/3×2	95.04%	77.72%	95.16%	99.76%	3.85 M	0.04 G
Vision Transformers							CCT-7/3×1	96.53%	80.92%	95.56%	99.82%	3.76 M	1.19 G
ViT-12/16	83.04%	57.97%	93.61%	99.63%	85.63 M	0.43 G	CCT-7/3×1*	98.00%	82.72%	_	_	3.76 M	1.19 G

Table 1: Top-1 validation accuracy comparisons. * variants were trained longer (see Table 2)

# Epochs	Pos. Emb.	CIFAR-10	CIFAR-100
300	Learnable	96.53%	80.92%
1500	Sinusoidal	97.48%	82.72%
5000	Sinusoidal	98.00%	82.87 %

Table 2: Top-1 accuracy on CIFAR-10/100 when a CCT model with 7 transformer encoder layers, and a 1-layer convolutional tokenizer with 3×3 kernel size is trained longer.

Model	Top-1	# Params	MACs	Training Epochs
ResNet50 [16]	77.15%	25.55 M	4.15 G	120
ResNet50 (2021) [44]	79.80%	25.55 M	$4.15\mathrm{G}$	300
ViT-S [19]	79.85%	22.05 M	4.61 G	300
CCT-14/7×2	80.67%	22.36 M	$5.53\mathrm{G}$	300
DeiT-S [19]	81.16%	22.44M	4.63 G	300
CCT-14/7×2 Distilled	81.34%	22.36 M	$5.53\mathrm{G}$	300

Table 3: ImageNet Top-1 validation accuracy comparison (no extra data or pretraining).

Model	Resolution	Pretraining	Top-1	# Params	MACs	
CCT-14/7×2	224	-	97.19%	22.17 M	18.63 G	
DeiT-B	384	ImageNet-1k	98.80%	86.25 M	55.68 G	
ViT-L/16	384	JFT-300M	99.74%	304.71 M	$191.30~\mathrm{G}$	
ViT-H/14	384	JFT-300M	99.68%	661.00 M	$504.00~\mathrm{G}$	
CCT-14/7×2	384	ImageNet-1k	99.76%	22.17 M	18.63 G	

Table 4: Flowers-102 Top-1 validation accuracy comparison.

CONCLUSION

- Main contributions
 - Extending transformer-based research to small data regimes
 - ViT-Lite which can be trained from scratch and achieve high accuracy on small scale data sets
 - Introducing Compact Vision Transformer (CVT)
 - Performance improved using SeqPool strategy
 - Introducing Compact Convolutional Transformer (CCT)
 - Increase performance and provide flexibility for input image sizes
- CCT can outperform other transformer based models on small datasets
 - Significant reduction in computational costs and memory constraints
- · Important to many scientific domains where data is far more limited

REFERENCES

- [1] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989..
- [2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.
- [3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [4] IanGoodfellow, YoshuaBengio, AaronCourville, and Yoshua Bengio. Deep learning. MIT press Cambridge, 2016.
- [5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing Systems*, 30:5998–6008, 2017.
- [6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
- [7] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve Je gou. Training data-efficient image transformers & distillation through attention. arXiv preprint arXiv:2012.12877, 2020.
- [8] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.
- [9] Ste phane d'Ascoli, Hugo Touvron, Matthew Leavitt, Ari Morcos, Giulio Biroli, and Levent Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697, 2021.
- [10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

REFERENCES

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

[12] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–729. IEEE, 2008

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

THANK YOU

Q&A