Improving Language Understanding by Generative Pre-Training

GPT - 1

Overview

- 1. Introduction
- 2. Framework
- 3. Experiments
- 4. Analysis
- 5. References

Introduction

Introduction

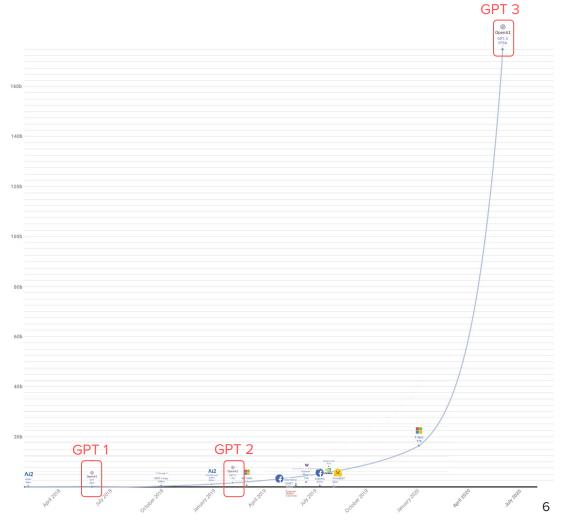
- GPT-1 was launched in 2018
- by OpenAl

Introduction: Why?

- NLP models were heavily trained on large amounts of annotated data for a particular task
- The NLP models were limited to what they have been trained for and failed to perform out-of-the-box tasks

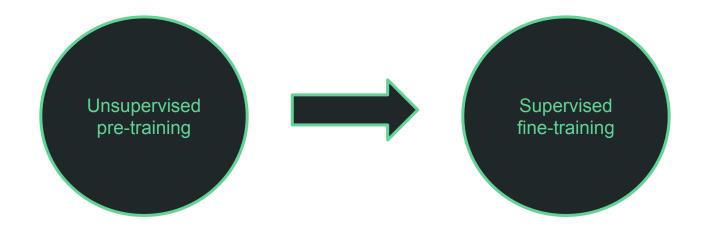
Introduction: Path of GPT

	GPT-1	GPT-2	GPT-3	
Parameters	117 Million	1.5 Billion	175 Billion	
Decoder Layers	12	48	96	
Context Token Size	512	1024	2048	
Hidden Layer	768	1600	12288	
Batch Size	64	512	3.2M	



Methodology

Methodology: Framework



Methodology: Unsupervised pre-training

- 1. For a unsupervised corpus of tokens $U = \{u1, ..., un\}$
 - a. Standard language modeling objective to maximize the this likelihood

$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

k is the size of the context window

- b. Conditional probability is **P** is modeled using a neural network with parameters **Θ**
- c. Parameters are trained using stochastic gradient descent [2]
- 2. Used multi-layer transformer decoder [3]
 - Applies multi-headed self attention operation over the input context tokens followed by position-wise feedforward layers to produce an output distribution over target tokens

$$egin{aligned} h_0 &= UW_e + W_p \ h_l &= exttt{transformer_block}(h_{l-1}) orall i \in [1,n] \ P(u) &= exttt{softmax}(h_nW_e^T) \end{aligned}$$

U = (u-k, ..., u-1) is the context vector of tokens, n is the number of layers, We is the token embedding matrix Wp is the position embedding matrix

Methodology: Supervised fine-tuning

- 1. Assumes a labeled dataset **C** where each instance consists of input tokens, **x1**, . . . , **xm**, along with a label **y**
- 2. The inputs are passed through the pre-trained model to obtain the final transformer block's activation h_l^m , which is then fed into an added linear output layer with parameters **Wy** to predict **y**

$$P(y|x^1,\ldots,x^m) = \mathtt{softmax}(h_l^m W_y).$$

3. Above gives the objective to maximize

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\ldots,x^m).$$

- 4. Included language modeling as an auxiliary objective to fine-tuning helped learning by
 - a. Improving generalization of the supervised model
 - b. Accelerating convergence

Optimized the following objective (with weight λ)

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

Methodology: Task specific input transformation

- 1. Some (Text classification) task can be directly fine tuned
- 2. But some are not. like,
 - a. Question answering
 - Textual entailment
 - c. Have structured inputs such as ordered sentence pairs, Triplets of document, Question and answers
 - => need modifications

Modifications

Use a traversal-style approach [4]

- Convert structured inputs into an ordered sequence that our pre-trained model can process.
- These input transformations allow us to avoid making extensive changes to the architecture across tasks.
- All transformations include adding randomly initialized start and end tokens ($\langle s \rangle$, $\langle e \rangle$).
 - => start and end tokens were added to input sequence
 - => delimiter token was added between different parts of example so that input could be sent as ordered sequence.

E.g. a training example comprised of sequences for context, question and answer for question answering task.

Methodology: Input transformation

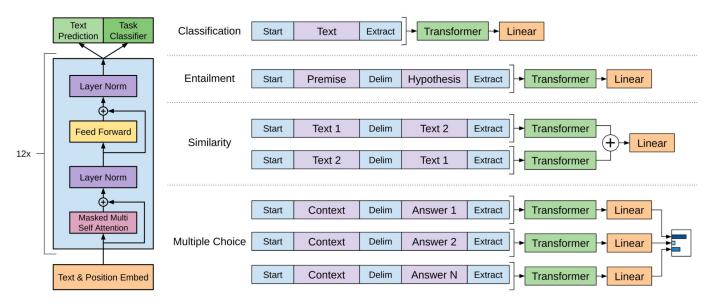


Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Methodology: Dataset

Used BookCorpus dataset for training the language model.

(Over 7000 unpublished books)

Methodology: Model Specification > Unsupervised Training

- 1. Model largely follows the original transformer work [6]
- 2. Trained 12 layer decoder-only transformer with masked self-attention heads (768 dimensional states and 12 attention heads)
- 3. For the position-wise feed-forward networks, used 3072 dimensional inner states
- 4. Used Adam optimization scheme [7] with max learning rate of 2.5e-4
- 5. The learning rate was increased linearly from 0 over the first 2000 updates and annealed to 0 using a cosine schedule
- 6. Train for 100 epochs on minibatches of 64 randomly sampled, contiguous sequences of 512 tokens
- 7. Since layernorm [8] is used extensively throughout the model, a simple weight initialization of N (0, 0.02) was sufficient
- 8. Used a bytepair encoding (BPE) vocabulary with 40,000 merges and residual, embedding, and attention dropouts with a rate of 0.1 for regularization
- 9. Employed a modified version of L2 regularization proposed in [9], with w = 0.01 on all non bias or gain weights
- 10. Gaussian Error Linear Unit (GELU) [10] was used as the activation function
- 11. Used learned position embeddings instead of the sinusoidal version proposed in the original work
- 12. Used the ftfy library2 to clean the raw text in BooksCorpus, standardize some punctuation and whitespace
- 13. Used the spaCy tokenizer

⁶ A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000–6010, 2017.

⁷ D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

B. J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101,2017.

D. Hendrycks and K. Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. arXiv preprint arXiv:1606.08415, 2016.

Methodology: Model Specification > Supervised Fine-tuning

- 1. 3 epochs for most of the downstream tasks
- 2. Most of the hyper parameters from unsupervised pre-training were used for fine-tuning.

Experiments

Experiments: Natural Language Inference Tasks

Table 2: Experimental results on natural language inference tasks, comparing our model with current state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the evaluation metric.

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	=	-7	89.3	-	_	-
CAFE $[58]$ $(5x)$	80.2	79.0	89.3	_	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	83.3		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Experiments: Question Answering and Commonsense Reasoning Tasks

Table 3: Results on question answering and commonsense reasoning, comparing our model with current state-of-the-art methods. 9x means an ensemble of 9 models.

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55]	76.5	-	-	-
Hidden Coherence Model [7]	<u>77.6</u>	-	-	-
Dynamic Fusion Net [67] (9x)	~	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	60.2	50.3	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

Experiments: Semantic Similarity and Classification

Table 4: Semantic similarity and classification results, comparing our model with current state-of-theart methods. All task evaluations in this table were done using the GLUE benchmark. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

Method	Classification		Semantic Similarity			GLUE
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2	_	, ,		-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	81.0	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 68.9
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

Analysis

Analysis

 GPT-1 proved that language model served as an effective pre-training objective which could help model generalize well.

 The architecture facilitated transfer learning and could perform various NLP tasks with very little fine-tuning.

 This model showed the power of generative pre-training and opened up avenues for other models which could unleash this potential better with larger datasets and more parameters.

References

References

- [1] Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
- [2] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951
- [3] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. Generating wikipedia by summarizing long sequences. ICLR, 2018.
- [4] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pages 1631–1642, 2013
- [5] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE international conference on computer vision, pages 19–27, 2015.
- [6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000–6010, 2017.
- [7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [8] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
- [9] I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. arXiv preprint arXiv:1711.05101,2017.
- [10] D. Hendrycks and K. Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. arXiv preprint arXiv:1606.08415, 2016.

Thank You