Professional Experience

  • Present 2020

    Senior Lecturer

    Department of Computer science & Engineering, University of Moratuwa,
    Sri Lanka

  • 2021 2020

    Research Fellow

    LIRNEasia,
    Sri Lanka

  • 2020 2014

    Graduate Research/Teaching Fellow

    University of Oregon, Department of Computer and Information Science,
    USA.

  • 2018 2018

    Givens Associate

    Argonne National Laboratory,
    USA.

  • 2020 2011

    Lecturer

    Department of Computer science & Engineering, University of Moratuwa,
    Sri Lanka

  • 2014 2013

    Researcher

    LIRNEasia,
    Sri Lanka

  • 2014 2013

    Visiting Lecturer

    Northshore College of Business and Technology,
    Sri Lanka

Education

  • Ph.D. 2020

    Ph.D. in Computer & Information Science

    University of Oregon, USA

  • MS 2016

    MS in Computer & Information Science

    University of Oregon, USA

  • BSc2011

    B.Sc Engineering (Hons)in Computer Science & Engineering

    University of Moratuwa, Sri Lanka

Featured Research

Critical Sentence Identification in Legal Cases Using Multi-Class Classification


S. Jayasinghe, L. Rambukkanage, A. Silva, N. de Silva, and A. Perera

arXiv preprint arXiv:2111.05721, 2021,

Inherently, the legal domain contains a vast amount of data in text format. Therefore it requires the application of Natural Language Processing (NLP) to cater to the analytically demanding needs of the domain. The advancement of NLP is spreading through various domains, such as the legal domain, in forms of practical applications and academic research. Identifying critical sentences, facts and arguments in a legal case is a tedious task for legal professionals. In this research we explore the usage of sentence embeddings for multi-class classification to identify critical sentences in a legal case, in the perspective of the main parties present in the case. In addition, a task-specific loss function is defined in order to improve the accuracy restricted by the straightforward use of categorical cross entropy loss.