Professional Experience

  • Present 2020

    Senior Lecturer

    Department of Computer science & Engineering, University of Moratuwa,
    Sri Lanka

  • 2021 2020

    Research Fellow

    LIRNEasia,
    Sri Lanka

  • 2020 2014

    Graduate Research/Teaching Fellow

    University of Oregon, Department of Computer and Information Science,
    USA.

  • 2018 2018

    Givens Associate

    Argonne National Laboratory,
    USA.

  • 2020 2011

    Lecturer

    Department of Computer science & Engineering, University of Moratuwa,
    Sri Lanka

  • 2014 2013

    Researcher

    LIRNEasia,
    Sri Lanka

  • 2014 2013

    Visiting Lecturer

    Northshore College of Business and Technology,
    Sri Lanka

Education

  • Ph.D. 2020

    Ph.D. in Computer & Information Science

    University of Oregon, USA

  • MS 2016

    MS in Computer & Information Science

    University of Oregon, USA

  • BSc2011

    B.Sc Engineering (Hons)in Computer Science & Engineering

    University of Moratuwa, Sri Lanka

Featured Research

Classifying Sentences in Court Case Transcripts using Discourse and Argumentative Properties


G. Ratnayaka, T. Rupasinghe, N. de Silva, M. Warushavithana, V. Gamage, M. Perera, and A. Perera

ICTer, vol. 12, no. 1, 2019,

Information that are available in court case transcripts which describes the proceedings of previous legal cases are of significant importance to legal officials. Therefore, automatic information extraction from court case transcripts can be considered as a task of huge importance when it comes to facilitating the processes related to legal domain. A sentence can be considered as a fundamental textual unit of any document which is made up of text. Therefore, analyzing the properties of sentences can be of immense value when it comes to information extraction from machine readable text. This paper demonstrate how the properties of sentences can be used to extract valuable information from court case transcripts. As the first task, the sentence pairs were classified based on the relationship type which can be observed between the two sentences. There, we defined relationship types that can be observed between sentences in court case transcripts. A system combining a machine learning model and a rule-based approach was used to classify pairs of sentences according to the relationship type. The next classification task was performed based on whether a given sentence provides a legal argument or not. The results obtained through the proposed methodologies were evaluated using human judges. To the best of our knowledge, this is the first study where discourse relationships between sentences have been used to determine relationships among sentences in legal court case transcripts. Similarly, this study provides novel and effective approaches to identify argumentative sentences in a court case transcripts.