Professional Experience

  • Present 2020

    Senior Lecturer

    Department of Computer science & Engineering, University of Moratuwa,
    Sri Lanka

  • 2021 2020

    Research Fellow

    LIRNEasia,
    Sri Lanka

  • 2020 2014

    Graduate Research/Teaching Fellow

    University of Oregon, Department of Computer and Information Science,
    USA.

  • 2018 2018

    Givens Associate

    Argonne National Laboratory,
    USA.

  • 2020 2011

    Lecturer

    Department of Computer science & Engineering, University of Moratuwa,
    Sri Lanka

  • 2014 2013

    Researcher

    LIRNEasia,
    Sri Lanka

  • 2014 2013

    Visiting Lecturer

    Northshore College of Business and Technology,
    Sri Lanka

Education

  • Ph.D. 2020

    Ph.D. in Computer & Information Science

    University of Oregon, USA

  • MS 2016

    MS in Computer & Information Science

    University of Oregon, USA

  • BSc2011

    B.Sc Engineering (Hons)in Computer Science & Engineering

    University of Moratuwa, Sri Lanka

Featured Research

Multi-Document Summarization: A Comparative Evaluation


K. Hewapathirana, N. de Silva, and C. Athuraliya

2023 IEEE 17th International Conference on Industrial and Information Systems (ICIIS), IEEE, 2023, pp. 19--24,

This paper is aimed at evaluating state-of-the-art models for Multi-document Summarization (MDS) on different types of datasets in various domains and investigating the limitations of existing models to determine future research directions. To address this gap, we conducted an extensive literature review to identify state-of-the-art models and datasets. We analyzed the performance of PRIMERA and PEGASUS models on BigSurvey-MDS and MS2 datasets, which posed unique challenges due to their varied domains. Our findings show that the General-Purpose Pre-trained Model LED outperforms PRIMERA and PEGASUS on the MS2 dataset. We used the ROUGE score as a performance metric to evaluate the identified models on different datasets. Our study provides valuable insights into the models' strengths and weaknesses, as well as their applicability in different domains. This work serves as a reference for future MDS research and contributes to the development of accurate and robust models which can be utilized on demanding datasets with academically and/or scientifically complex data as well as generalized, relatively simple datasets.